Skip to main content
Log in

Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g−1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, X. L.; Chen, L.; Liu, J. Y.; Haller, S.; Wang, Y. G.; Xia, Y. Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

    Article  Google Scholar 

  2. Sun, X. L.; Yan, C. L.; Chen, Y.; Si, W. P.; Deng, J. W.; Oswald, S.; Liu, L. F.; Schmidt, O. G. Three-dimensionally “curved” NiO nanomembranes as ultrahigh rate capability anodes for Li-ion batteries with long cycle lifetimes. Adv. Energy Mater. 2014, 4, 1300912.

    Article  Google Scholar 

  3. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  Google Scholar 

  4. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

    Article  Google Scholar 

  5. Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y. S.; Li, H.; Chen, X. L.; Armand, M.; Chen, L. Q. et al. Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Sci. Adv. 2015, 1, e1500330.

    Article  Google Scholar 

  6. Sun, X. L.; Si, W. P.; Liu, X. H.; Deng, J. W.; Xi, L. X.; Liu, L. F.; Yan, C. L.; Schmidt, O. G. Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries. Nano Energy 2014, 9, 168–175.

    Article  Google Scholar 

  7. Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

    Article  Google Scholar 

  8. Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Papandrea, B.; Huang, Y.; Duan, X. F. Solvated graphene frameworks as highperformance anodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 5345–5350.

    Article  Google Scholar 

  9. Cong, L.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

    Article  Google Scholar 

  10. Wang, X. X.; Wang, J. N.; Chang, H.; Zhang, Y. F. Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 2007, 17, 3613–3618.

    Article  Google Scholar 

  11. Yun, Y. S.; Park, Y. U.; Chang, S. J.; Kim, B. H.; Choi, J.; Wang, J.; Zhang, D.; Braun, P. V.; Jin, H. J.; Kang, K. Crumpled graphene paper for high power sodium battery anode. Carbon 2016, 99, 658–664.

    Article  Google Scholar 

  12. Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A sandwichlike hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, 1301584.

    Article  Google Scholar 

  13. Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 2013, 6, 56–60.

    Article  Google Scholar 

  14. Tanaka, U.; Sogabe, T.; Sakagoshi, H.; Ito, M.; Tojo, T. Anode property of boron-doped graphite materials for rechargeable lithium-ion batteries. Carbon 2001, 39, 931–936.

    Article  Google Scholar 

  15. Zhang, C. Z.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. L. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937.

    Article  Google Scholar 

  16. Fu, R. W.; Baumann, T. F.; Cronin, S.; Dresselhaus, G.; Dresselhaus, M. S.; Satcher Jr, J. H. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir 2005, 21, 2647–2651.

    Article  Google Scholar 

  17. Zhang, H.; Zhang, G. H.; Li, Z. Q.; Qu, K.; Wang, L.; Zeng, W.; Zhang, Q. F.; Duan, H. G. Ultra-uniform CuO/Cu in nitrogen-doped carbon nanofibers as a stable anode for Li-ion batteries. J. Mater. Chem. A 2016, 4, 10585–10592.

    Article  Google Scholar 

  18. Zhou, R. F.; Qiao, S. Z. An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chem. Commun. 2015, 51, 7516–7519.

    Article  Google Scholar 

  19. Wen, Z.; Wang, Q.; Zhang, Q.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772–2778.

    Article  Google Scholar 

  20. Van Lam, D.; Jo, K.; Kim, C. H.; Kim, J. H.; Lee, H. J.; Lee, S. M. Activated carbon textile via chemistry of metal extraction for supercapacitors. ACS Nano 2016, 10, 11351–11359.

    Article  Google Scholar 

  21. Qian, W. J.; Sun, F. X.; Xu, Y. H.; Qiu, L. H.; Liu, C. H.; Wang, S. D.; Yan, F. Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 2014, 7, 379–386.

    Article  Google Scholar 

  22. Teng, M. M.; Qiao, J. L.; Li, F. T.; Bera, P. K. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules. Carbon 2012, 50, 2877–2886.

    Article  Google Scholar 

  23. Li, W. H.; Li, M. S.; Wang, M.; Zeng, L. C.; Yu, Y. Electrospinning with partially carbonization in air: Highly porous carbon nanofibers optimized for high-performance flexible lithium-ion batteries. Nano Energy 2015, 13, 693–701.

    Article  Google Scholar 

  24. Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

    Article  Google Scholar 

  25. Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

    Article  Google Scholar 

  26. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

    Article  Google Scholar 

  27. Yin, H.; Cao, M. L.; Yu, X. X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Q. Self-standing Bi2O3 nanoparticles/carbon nanofiber hybrid films as a binder-free anode for flexible sodium-ion batteries. Mater. Chem. Front. 2017, 1, 1615–1621.

    Article  Google Scholar 

  28. Zhang, F.; Yuan, C. Z.; Zhu, J. J.; Wang, J.; Zhang, X. G.; Lou, X. W. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors. Adv. Funct. Mater. 2013, 23, 3909–3915.

    Article  Google Scholar 

  29. Li, H. B.; Kang, W. J.; Xi, B. J.; Yan, Y.; Bi, H. Y.; Zhu, Y. C.; Qian, Y. T. Thermal synthesis of Cu@carbon spherical core-shell structures from carbonaceous matrices containing embedded copper particles. Carbon 2010, 48, 464–469.

    Article  Google Scholar 

  30. Schaper, A. K.; Hou, H.; Greiner, A.; Schneider, R.; Phillipp, F. Copper nanoparticles encapsulated in multi-shell carbon cages. Appl. Phys. A 2004, 78, 73–77.

    Article  Google Scholar 

  31. Bokhonov, B. B.; Novopashin, S. A. In situ investigation of morphological and phase changes during thermal annealing and oxidation of carbon-encapsulated copper nanoparticles. J. Nanopart. Res. 2010, 12, 2771–2777.

    Article  Google Scholar 

  32. Nam, D. H.; Lee, J. H.; Kim, N. R.; Lee, Y. Y.; Yeon, H. W.; Lee, S. Y.; Joo, Y. C. One-step structure modulation of electrospun metal-loaded carbon nanofibers: Redox reaction controlled calcination. Carbon 2015, 82, 273–281.

    Article  Google Scholar 

  33. Bulushev, D. A.; Chuvilin, A. L.; Sobolev, V. I.; Stolyarova, S. G.; Shubin, Y. V.; Asanov, I. P.; Ishchenko, A. V.; Magnani, G.; Riccò, M.; Okotrub, A. V. et al. Copper on carbon materials: Stabilization by nitrogen doping. J. Mater. Chem. A 2017, 5, 10574–10583.

    Article  Google Scholar 

  34. Nam, D. H.; Kim, J. W.; Lee, J. H.; Lee, S. Y.; Shin, H. A. S.; Lee, S. H.; Joo, Y. C. Tunable Sn structures in porositycontrolled carbon nanofibers for all-solid-state lithium-ion battery anodes. J. Mater. Chem. A 2015, 3, 11021–11030.

    Article  Google Scholar 

  35. Wang, C. D.; Lan, M. H.; Zhang, Y.; Bian, H. D.; Yuen, M. F.; Ostrikov, K.; Jiang, J. J.; Zhang, W. J.; Li, Y. Y.; Lu, J. Fe1-xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chem. 2016, 18, 3029–3039.

    Article  Google Scholar 

  36. Zhang, H.; Tang, Z. Y.; Zhang, K.; Wang, L.; Shi, H. M.; Zhang, G. H.; Duan, H. G. Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries. Electrochim. Acta 2017, 247, 692–700.

    Article  Google Scholar 

  37. Wang, L.; Zhang, G. H.; Zhang, X. J.; Shi, H. M.; Zeng, W.; Zhang, H.; Liu, Q.; Li, C. C.; Liu, Q. H.; Duan, H. G. Porous ultrathin carbon nanobubbles formed carbon nanofiber webs for high-performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 14801–14810.

    Article  Google Scholar 

  38. Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659.

    Article  Google Scholar 

  39. Zhu, J.; Shan, Y.; Wang, T.; Sun, H. T.; Zhao, Z. P.; Mei, L.; Fan, Z.; Xu, Z.; Shakir, I.; Huang, Y. et al. A hyperaccumulation pathway to three-dimensional hierarchical porous nanocomposites for highly robust high-power electrodes. Nat. Commun. 2016, 7, 13432.

    Article  Google Scholar 

  40. Wang, C. D.; Xu, J. L.; Yuen, M. F.; Zhang, J.; Li, Y. Y.; Chen, X. F.; Zhang, W. J. Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Funct. Mater. 2014, 24, 6372–6380.

    Article  Google Scholar 

  41. Sun, X. L.; Hao, G. P.; Lu, X. Y.; Xi, L. X.; Liu, B.; Si, W. P.; Ma, C. S.; Liu, Q. M.; Zhang, Q.; Kaskel, S. et al. High-defect hydrophilic carbon cuboids anchored with Co/CoO nanoparticles as highly efficient and ultra-stable lithium-ion battery anodes. J. Mater. Chem. A 2016, 4, 10166–10173.

    Article  Google Scholar 

  42. Tang, Z. Y.; Zhang, G. H.; Zhang, H.; Wang, L.; Shi, H. M.; Wei, D. H.; Duan, H. G. MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors. Energy Storage Mater. 2018, 10, 75–84.

    Article  Google Scholar 

  43. Wang, J.; Wang, K.; Wang, F. B.; Xia, X. H. Bioinspired copper catalyst effective for both reduction and evolution of oxygen. Nat. Commun. 2014, 5, 5285.

    Article  Google Scholar 

  44. Yin, H.; Cao, M. L.; Yu, X. X.; Li, C.; Shen, Y.; Zhu, M. Q. Hierarchical CuBi2O4 microspheres as lithium-ion battery anodes with superior high-temperature electrochemical performance. RSC Adv. 2017, 7, 13250–13256.

    Article  Google Scholar 

  45. Yin, H.; Yu, X. X.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Zhu, M. Q. Hollow porous CuO/C composite microcubes derived from metal-organic framework templates for highly reversible lithium-ion batteries. J. Alloys Compd. 2017, 706, 97–102.

    Article  Google Scholar 

  46. Ji, L. W.; Yao, Y. F.; Toprakci, O.; Lin, Z.; Liang, Y. Z.; Shi, Q.; Medford, A. J.; Millns, C. R.; Zhang, X. W. Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J. Power Sources 2010, 195, 2050–2056.

    Article  Google Scholar 

  47. Wang, D. N.; Yang, J. L.; Li, X. F.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 2013, 6, 2900–2906.

    Article  Google Scholar 

  48. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  49. Lee, J.; Zhu, H. Z.; Yadav, G. G.; Caruthers, J.; Wu, Y. Porous ternary complex metal oxide nanoparticles converted from core/shell nanoparticles. Nano Res. 2016, 9, 996–1004.

    Article  Google Scholar 

  50. Zheng, F. C.; Xia, G. L.; Yang, Y.; Chen, Q. W. MOFderived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 2015, 7, 9637–9645.

    Article  Google Scholar 

  51. Jian, Z. L.; Bommier, C.; Luo, L. L.; Li, Z. F.; Wang, W. T.; Wang, C. M.; Greaney, P. A.; Ji, X. L. Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 2017, 29, 2314–2320.

    Article  Google Scholar 

  52. Chen, Z.; Wang, T. H.; Zhang, M.; Cao, G. Z. A phaseseparation route to synthesize porous CNTs with excellent stability for Na+ storage. Small 2017, 13, 1604045.

    Article  Google Scholar 

  53. Wang, Z. H.; Qie, L.; Yuan, L. X.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance. Carbon 2013, 55, 328–334.

    Article  Google Scholar 

  54. Zhu, J. D.; Chen, C.; Lu, Y.; Ge, Y. Q.; Jiang, H.; Fu, K.; Zhang, X. W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 2015, 94, 189–195.

    Article  Google Scholar 

  55. Li, D. D.; Chen, H. B.; Liu, G. X.; Wei, M.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 2015, 94, 888–894.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 21527810, 21190041, 21521063, 11274107, 11574078 and 51702095) and the Fundamental Research Funds for the Central Universities (No. 531107040992).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guanhua Zhang or Jianhui Jiang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, G., Li, Z. et al. Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage. Nano Res. 11, 3791–3801 (2018). https://doi.org/10.1007/s12274-017-1953-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1953-0

Keywords

Navigation