Skip to main content
Log in

Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A spin-coating method was applied to obtain thinner and smoother PEO/LiClO4 polymer electrolyte films (EFs) with a lower level of crystallization than those obtained using a drop-casting method. When the applied frequency was as high as 10 kHz, the specific capacitance of such EFs with thicknesses of 1.5 μm was on the order of 1 μF∙cm−2, a value larger than most of the previously reported results achieved from the same material. We then combined the thin EFs with two-dimensional (2D) materials to fabricate a MoS2 transistor with a top gate right above the channel, defined by a shadow-mask method, and an inverter device. This transistor showed excellent static characteristics and the inverter device showed excellent switching performance at 100 Hz, which indicates a fast polarization response of the thin EFs. Such device architecture is suitable for future low power and flexible electronics based on 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Panzer, M. J.; Frisbie, C. D. Exploiting ionic coupling in electronic devices: Electrolyte-gated organic field-effect transistors. Adv. Mater. 2008, 20, 3177–3180.

    Article  Google Scholar 

  2. Sun, D. M.; Liu, C.; Ren, W. C.; Cheng, H. M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9, 1188–1205.

    Article  Google Scholar 

  3. Cho, J. H.; Lee, J.; He, Y.; Kim, B. S.; Lodge, T. P.; Frisbie, C. D. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 2008, 20, 686–690.

    Article  Google Scholar 

  4. Zhou, C. J.; Wang, X. S.; Raju, S.; Lin, Z. Y.; Villaroman, D.; Huang, B. L.; Chan, H. L. W.; Chan, M. S.; Chai, Y. Low voltage and high ON/OFF ratio field-effect transistors based on CVD MoS2 and ultra high-k gate dielectric PZT. Nanoscale 2015, 7, 8695–8700.

    Article  Google Scholar 

  5. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nano 2008, 3, 210–215.

    Article  Google Scholar 

  6. Zhang, Y. J.; Ye, J. T.; Matsuhashi, Y.; Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 2012, 12, 1136–1140.

    Article  Google Scholar 

  7. Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.

    Article  Google Scholar 

  8. Kim, B. J.; Jang, H.; Lee, S. K.; Hong, B. H.; Ahn, J. H.; Cho, J. H. High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 2010, 10, 3464–3466.

    Article  Google Scholar 

  9. Choi, Y.; Kang, J.; Jariwala, D.; Kang, M. S.; Marks, T. J.; Hersam, M. C.; Cho, J. H. Low-voltage complementary electronics from ion-gel-gated vertical van der Waals heterostructures. Adv. Mater. 2016, 28, 3742–3748.

    Article  Google Scholar 

  10. Yu, S.; Tsutomu, N.; Yoshihiro, I. Gate-induced superconductivity in two-dimensional atomic crystals. Supercond. Sci. Technol. 2016, 29, 093001.

    Article  Google Scholar 

  11. Chu, L. Q.; Schmidt, H.; Pu, J.; Wang, S. F.; Özyilmaz, B.; Takenobu, T.; Eda, G. Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors. Sci. Rep. 2014, 4, 7293.

    Article  Google Scholar 

  12. Lee, S. K.; Kim, B. J.; Jang, H.; Yoon, S. C.; Lee, C.; Hong, B. H.; Rogers, J. A.; Cho, J. H.; Ahn, J. H. Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 2011, 11, 4642–4646.

    Article  Google Scholar 

  13. Chang, Y. H.; Zhang, W. J.; Zhu, Y. H.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 2014, 8, 8582–8590.

    Article  Google Scholar 

  14. Xu, H. L.; Fathipour, S.; Kinder, E. W.; Seabaugh, A. C.; Fullerton-Shirey, S. K. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 2015, 9, 4900–4910.

    Article  Google Scholar 

  15. Wang, X.; Zhang, T. B.; Yang, W.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 fet by remote forming gas plasma pretreatment. Appl. Phys. Lett. 2017, 110, 053110.

    Article  Google Scholar 

  16. Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K. et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001.

    Article  Google Scholar 

  17. Cho, J. H.; Lee, J.; Xia, Y.; Kim, B.; He, Y. Y.; Renn, M. J.; Lodge, T. P.; Frisbie, C. D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 2008, 7, 900–906.

    Article  Google Scholar 

  18. Pu, J.; Funahashi, K.; Chen, C. H.; Li, M. Y.; Li, L. J.; Takenobu, T. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 2016, 28, 4111–4119.

    Article  Google Scholar 

  19. Xia, Y.; Zhang, W.; Ha, M. J.; Cho, J. H.; Renn, M. J.; Kim, C. H.; Frisbie, C. D. Printed sub-2 V gel-electrolyte-gated polymer transistors and circuits. Adv. Funct. Mater. 2010, 20, 587–594.

    Article  Google Scholar 

  20. Kelly, A. G.; Hallam, T.; Backes, C.; Harvey, A.; Esmaeily, A. S.; Godwin, I.; Coelho, J.; Nicolosi, V.; Lauth, J.; Kulkarni, A. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 2017, 356, 69–73.

    Article  Google Scholar 

  21. Kim, S. H.; Hong, K.; Xie, W.; Lee, K. H.; Zhang, S. P.; Lodge, T. P.; Frisbie, C. D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846.

    Article  Google Scholar 

  22. Ye, J. T.; Zhang, Y. J.; Akashi, R.; Bahramy, M. S.; Arita, R.; Iwasa, Y. Superconducting dome in a gate-tuned band insulator. Science 2012, 338, 1193–1196.

    Article  Google Scholar 

  23. Lin, M. W.; Liu, L. Z.; Lan, Q.; Tan, X. B.; Dhindsa, K. S.; Zeng, P.; Naik, V. M.; Cheng, M. M. C.; Zhou, Z. X. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J. Phys. D: Appl. Phys. 2012, 45, 345102.

    Article  Google Scholar 

  24. Bonaccorso, F.; Bartolotta, A.; Coleman, J. N.; Backes, C. 2D-crystal-based functional inks. Adv. Mater. 2016, 28, 6136–6166.

    Article  Google Scholar 

  25. Panzer, M. J.; Frisbie, C. D. High carrier density and metallic conductivity in poly(3-hexylthiophene) achieved by electrostatic charge injection. Adv. Funct. Mater. 2006, 16, 1051–1056.

    Article  Google Scholar 

  26. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications; Springer: Boston, MA, 1999.

    Book  Google Scholar 

  27. Wang, D. W.; Wang, Q.; Javey, A.; Tu, R.; Dai, H. J.; Kim, H.; McIntyre, P. C.; Krishnamohan, T.; Saraswat, K. C. Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics. Appl. Phys. Lett. 2003, 83, 2432–2434.

    Article  Google Scholar 

  28. Lee, J.; Panzer, M. J.; He, Y. Y.; Lodge, T. P.; Frisbie, C. D. Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 2007, 129, 4532–4533.

    Article  Google Scholar 

  29. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M. B.; Chabagno, J. M.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11, 91–95.

    Article  Google Scholar 

  30. Das, D.; Langrish, T. A. G. Combined crystallization and drying in a pilot-scale spray dryer. Drying Technol. 2012, 30, 998–1007.

    Article  Google Scholar 

  31. Bao, W. Z.; Liu, G.; Zhao, Z.; Zhang, H.; Yan, D.; Deshpande, A.; LeRoy, B.; Lau, C. N. Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices. Nano Res. 2010, 3, 98–102.

    Article  Google Scholar 

  32. Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A. et al. One-dimensional electrical contact to a twodimensional material. Science 2013, 342, 614–617.

    Article  Google Scholar 

  33. Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

    Article  Google Scholar 

  34. Yu, Z. H.; Ong, Z. Y.; Li, S. L.; Xu, J.-B.; Zhang, G.; Zhang, Y. W.; Shi, Y.; Wang, X. A. Analyzing the carrier mobility in transition-metal dichalcogenide MoS2 field-effect transistors. Adv. Funct. Mater. 2017, 27, 1604093.

    Article  Google Scholar 

  35. Radisavljevic, B.; Whitwick, M. B.; Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 2011, 5, 9934–9938.

    Article  Google Scholar 

  36. Zhou, C. J.; Zhao, Y. D.; Raju, S.; Wang, Y.; Lin, Z. Y.; Chan, M. S.; Chai, Y. Carrier type control of WSe2 fieldeffect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 2016, 26, 4223–4230.

    Article  Google Scholar 

  37. Sachid, A. B.; Tosun, M.; Desai, S. B.; Hsu, C. Y.; Lien, D. H.; Madhvapathy, S. R.; Chen, Y. Z.; Hettick, M.; Kang, J. S.; Zeng, Y. P. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 2016, 28, 2547–2554.

    Article  Google Scholar 

  38. Rabaey, J. M.; Chandrakasan, A.; Nikolic, B. Digital Integrated Circuits: A Design Perspective. Prentice Hall: New York, 2003.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2016YFA0203900) and Natural Science Foundation of Shanghai (No. 17ZR1446700). P. Z. would like to acknowledge the National Natural Science Foundation of China (Nos. 61376093 and 61622401). W. B. and J. W. also acknowledge the support from the 1000 Talented Youth Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Wan or Wenzhong Bao.

Electronic supplementary material

12274_2017_1945_MOESM1_ESM.pdf

Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, W., Zhang, Q., Xu, H. et al. Large capacitance and fast polarization response of thin electrolyte dielectrics by spin coating for two-dimensional MoS2 devices. Nano Res. 11, 3739–3745 (2018). https://doi.org/10.1007/s12274-017-1945-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1945-0

Keywords

Navigation