Skip to main content
Log in

Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Heteroatom-doped carbon dots (CDs) with a high photoluminescent quantum yield (PLQY) have recently attracted attention due to their applications in chemical sensors, photocatalysis, bioimaging, and drug delivery. Nitrogen and phosphorus are in close proximity to carbon in the periodic table and are key tracking elements in the field of biomedical imaging. These two elements alter the optical and electronic properties of CDs and help improve the fundamental understanding of their PLQY. This can also lead to multifunctional usage in photoimaging and photothermal therapy. However, most PLQYs resulting from the synthesis of P-doped CDs are currently below 50%. These CDs have limited usefulness in the fields of bioimaging and drug delivery. In this study, a single-step, high-efficiency hydrothermal method was applied to synthesize nitrogen and phosphorous-doped carbon dots ((N,P)-CDs) with a PLQY of up to 53.8% with independent emission behavior. Moreover, the CDs presented high monodispersity, robust excitation-independent luminescence, and stability over a large pH range. Spectroscopic investigations indicated that the PLQY of the (N,P)-CDs was primarily due to the addition of P and the passivation effect of the oxidized surface. The excellent fluorescence properties of (N,P)-CDs can be effectively and selectively quenched by Hg2+ ions. Such systems show a linear response in the 0–900 nM concentration range with a short response time, indicating their potential for applications in the fields of chemistry and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  Google Scholar 

  2. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  Google Scholar 

  3. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

    Article  Google Scholar 

  4. Yan, F. Y.; Zou, Y.; Wang, M.; Mu, X. L.; Yang, N.; Chen, L. Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensor. Actuat. B-Chem. 2014, 192, 488–495.

    Article  Google Scholar 

  5. Xu, Q.; Zhao, J. G.; Liu, Y.; Pu, P.; Wang, X. S.; Chen, Y. S.; Gao, C.; Chen, J. R.; Zhou, H. J. Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(III). J. Mater. Sci. 2015, 50, 2571–2576.

    Article  Google Scholar 

  6. Yang, S. W.; Sun, J.; Li, X. B.; Zhou, W.; Wang, Z. Y.; He, P.; Ding, G. Q.; Xie, X. M.; Kang, Z. H.; Jiang, M. H. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J. Mater. Chem. A 2014, 2, 8660–8667.

    Article  Google Scholar 

  7. Yang, X. M.; Luo, Y. W.; Zhu, S. S.; Feng, Y. J.; Zhuo, Y.; Dou, Y. One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines. Biosens. Bioelectron. 2014, 56, 6–11.

    Article  Google Scholar 

  8. Posthuma-Trumpie, G. A.; Wichers, J. H.; Koets, M.; Berëndsen, L. B. J. M.; van Amerongen, A. Amorphous carbon nanoparticles: A versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 2012, 402, 593–600.

    Article  Google Scholar 

  9. Xu, Q.; Liu, Y.; Su, R. G.; Cai, L. L.; Li, B. F.; Zhang, Y. Y.; Zhang, L. Z.; Wang, Y. J.; Wang, Y.; Li, N. et al. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental-theoretical consideration. Nanoscale 2016, 8, 17919–17927.

    Article  Google Scholar 

  10. Liu, R. H.; Li, H. T.; Kong, W. Q.; Liu, J.; Liu, Y.; Tong, C. Y.; Zhang, X.; Kang, Z. H. Ultra-sensitive and selective Hg2+ detection based on fluorescent carbon dots. Mater. Res. Bull. 2013, 48, 2529–2534.

    Article  Google Scholar 

  11. Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. K. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.

    Article  Google Scholar 

  12. Ruan, S. B.; Qian, J.; Shen, S.; Zhu, J. H.; Jiang, X. G.; He, Q.; Gao, H. L. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 2014, 6, 10040–10047.

    Article  Google Scholar 

  13. Xing, X. H.; Zhang, B. B.; Wang, X. H.; Liu, F. J.; Shi, D. L.; Cheng, Y. S. An “imaging-biopsy” strategy for colorectal tumor reconfirmation by multipurpose paramagnetic quantum dots. Biomaterials 2015, 48, 16–25.

    Article  Google Scholar 

  14. Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, J.; Chang, J. et al. Albumin-bioinspired Gd:CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 2016, 10, 10245–10257.

    Article  Google Scholar 

  15. Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565–586.

    Article  Google Scholar 

  16. Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

    Article  Google Scholar 

  17. Wang, Z. F.; Yuan, F. L.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. 53% efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes. Adv. Mater. 2017, 29, 1702910.

    Article  Google Scholar 

  18. Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem., Int. Ed. 2009, 121, 4668–4671.

    Article  Google Scholar 

  19. Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3774–3776.

    Google Scholar 

  20. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  21. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

    Article  Google Scholar 

  22. Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreenivasan, T. S.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatomdoped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219

    Article  Google Scholar 

  23. Gong, Y. Q.; Yu, B.; Yang, W.; Zhang, X. L. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages. Biosens. Bioelectron. 2016, 79, 822–828.

    Article  Google Scholar 

  24. Wang, C.; Zhou, J. D.; Ran, G. X.; Li, F.; Zhong, Z.; Song, Q. J.; Dong, Q. C. Bi-functional fluorescent polymer dots: A one-step synthesis via controlled hydrothermal treatment and application as probes for the detection of temperature and Fe3+. J. Mater. Chem. C 2017, 5, 434–443.

    Article  Google Scholar 

  25. Liang, Q. H.; Ma, W. J.; Shi, Y.; Li, Z.; Yang, X. M. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon 2013, 60, 421–428.

    Article  Google Scholar 

  26. Paraknowitsch, J. P.; Zhang, Y. J.; Wienert, B.; Thomas, A. Nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives. Chem. Commun. 2013, 49,1208–1210.

    Article  Google Scholar 

  27. Xu, Q.; Liu, Y.; Gao, C.; Wei, J. F.; Zhou, H. J.; Chen, Y. S.; Dong, C. B.; Sreeprasad, T. S.; Li, N.; Xia, Z. H. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. J. Mater. Chem. C 2015, 3, 9885–9893.

    Article  Google Scholar 

  28. Wu, M. B.; Wang, Y.; Wu, W. T.; Hu, C.; Wang, X. N.; Zheng, J. T.; Li, Z. T.; Jiang, B.; Qiu, J. S. Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 2014, 78, 480–489.

    Article  Google Scholar 

  29. Simões, E. F. C.; da Silva, J. C. G. E.; Leitão, J. M. M. Carbon dots from tryptophan doped glucose for peroxynitrite sensing. Anal. Chim. Acta 2014, 852, 174–180.

    Article  Google Scholar 

  30. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Shiral Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    Article  Google Scholar 

  31. Liang, J.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem., Int. Ed. 2012, 51, 11496–11500.

    Article  Google Scholar 

  32. Nolan, E. M.; Lippard, S. J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480.

    Article  Google Scholar 

  33. Harris, H. H.; Pickering, I. J.; George, G. N. The chemical form of mercury in fish. Science 2003, 301, 1203–1203.

    Article  Google Scholar 

  34. Qu, K. G.; Wang, J. S.; Ren, J. S.; Qu, X. G. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron(III) ions and dopamine. Chem.-Eur. J. 2013, 19, 7243–7249.

    Article  Google Scholar 

  35. Li, S. H.; Li, Y. C.; Cao, J.; Zhu, J.; Fan, L. Z.; Li, X. H. Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe3+. Anal. Chem. 2014, 86, 10201–10207.

    Article  Google Scholar 

  36. Zhang, H. J.; Chen, Y. L.; Liang, M. J.; Xu, L. F.; Qi, S. D.; Chen, H. L.; Chen, X. G. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal. Chem. 2014, 86, 9846–9852.

    Article  Google Scholar 

  37. Shi, B. F.; Su, Y. B.; Zhang, L. L.; Huang, M. J.; Liu, R. Q.; Zhao, S. L. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl. Mater. Interfaces 2016, 8, 10717–10725.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Beijing Nova Program (No. Z171100001117058), Beijing Nova program Interdisciplinary Studies Cooperative Project, Beijing Municipal Science and Technology Project (No. Z161100001316010), State Key Laboratory of Silicate Materials for Architecture (No. SYSJJ2016-05), Medical Science Youth Training Program (No. 16PNQ145), Defense Technology Project Fund (No. 3408080), Translational Medicine Project of PLAGH (No. 2016TM-019), and the National Science Foundation for Young Scientists of China (No. 81402216) for the support. This work was obtained with the resources and financial support of National Synchrotron Radiation Laboratory in Hefei.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quan Xu, Neng Li or Lulu Cai.

Electronic supplementary material

12274_2017_1937_MOESM1_ESM.pdf

Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Li, B., Ye, Y. et al. Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Res. 11, 3691–3701 (2018). https://doi.org/10.1007/s12274-017-1937-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1937-0

Keywords

Navigation