Skip to main content
Log in

Consequence of shape elongation on emission asymmetry for colloidal CdSe/CdS nanoplatelets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate that for colloidal CdSe/CdS nanoplatelets, a rectangular shape induces emission asymmetry, in terms of both polarization and emission patterns. Polarimetry and emission pattern analyses are combined to provide information on the orientation of the transition dipoles involved in the nanoplatelet emission. It is shown that for rectangular nanoplatelets, the emission is polarized and the emission patterns are anisotropic, whereas they remain nonpolarized and isotropic for square nanoplatelets. This can be appropriately described by the dielectric antenna effect induced by the elongated shape of the rectangular platelet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Empedocles, S. A.; Neuhauser, R.; Bawendi, M. G. Threedimensional orientation measurements of symmetric single chromophores using polarization microscopy. Nature 1999, 399, 126–130.

    Article  Google Scholar 

  2. Chung, I.; Shimizu, K. T.; Bawendi, M. G. Room temperature measurements of the 3D orientation of single CdSe quantum dots using polarization microscopy. Proc. Natl. Acad. Sci. USA 2003, 100, 405–408.

    Article  Google Scholar 

  3. Brokmann, X.; Coolen, L.; Dahan, M.; Hermier, J. P. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys. Rev. Lett. 2004, 93, 107403.

    Article  Google Scholar 

  4. Lethiec, C.; Laverdant, J.; Vallon, H.; Javaux, C.; Dubertret, B.; Frigerio, J. M.; Schwob, C.; Coolen, L.; Maître, A. Measurement of three-dimensional dipole orientation of a single fluorescent nanoemitter by emission polarization analysis. Phys. Rev. X 2014, 4, 021037.

    Google Scholar 

  5. Cassette E.; Mahler, B.; Guigner, J. M.; Patriarche, G.; Dubertret, B.; Pons, T. Colloidal CdSe/CdS dot-in-plate nanocrystals with 2D-polarized emission. ACS Nano 2012, 6, 6741–6750.

    Article  Google Scholar 

  6. Chen, X.; Nazzal, A.; Goorskey, D.; Xiao, M.; Peng, Z. A.; Peng, X. G. Polarization spectroscopy of single CdSe quantum rods. Phys. Rev. B 2001, 64, 245304.

    Article  Google Scholar 

  7. Lethiec, C.; Pisanello, F.; Carbone, L.; Bramati, A.; Coolen, L.; Maître, A. Polarimetry-based analysis of dipolar transitions of single colloidal CdSe/CdS dot-in-rods. New J. Phys. 2014, 16, 093014.

    Article  Google Scholar 

  8. Cyphersmith, A.; Early, K.; Maksov, A.; Graham, J.; Wang, Y.; Barnes, M. Disentangling the role of linear transition dipole in band-edge emission from single CdSe/ZnS quantum dots: Combined linear anisotropy and defocused radiation pattern imaging. Appl. Phys. Lett. 2010, 97, 121915.

    Article  Google Scholar 

  9. Vezzoli, S.; Manceau, M.; Leménager, G.; Glorieux, Q.; Giacobino, E.; Carbone, L.; De Vittorio, M.; Bramati, A. Exciton fine structure of CdSe/CdS nanocrystals determined by polarization microscopy at room temperature. ACS Nano 2015, 9, 7992–8003.

    Article  Google Scholar 

  10. Hadar, I.; Hitin, G. B.; Sitt, A.; Faust, A.; Banin, U. Polarization properties of semiconductor nanorod heterostructures: From single particles to the ensemble. J. Phys. Chem. Lett. 2013, 4, 502–507.

    Article  Google Scholar 

  11. Sitt, A.; Salant, A.; Menagen, G.; Banin, U. Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 2011, 11, 2054–2060.

    Article  Google Scholar 

  12. Diroll, B. T.; Dadosh, T.; Koschitzky, A.; Goldman, Y. E.; Murray, C. B. Interpreting the energy-dependent anisotropy of colloidal nanorods using ensemble and single-particle spectroscopy. J. Phys. Chem. C 2013, 117, 23928–23937.

    Article  Google Scholar 

  13. Shan, C. X.; Liu, Z.; Hark, S. K. Photoluminescence polarization in individual CdSe nanowires. Phys. Rev. B 2006, 74, 153402.

    Article  Google Scholar 

  14. Kovalev, D.; Averboukh, B.; Ben-Chorin, M.; Koch, F.; Efros, A. L.; Rosen, M. Optically induced polarization anisotropy in porous Si. Phys. Rev. Lett. 1996, 77, 2089–2092.

    Article  Google Scholar 

  15. Ithurria, S.; Tessier, M. D.; Mahler, B.; Lobo, R. P. S. M.; Dubertret, B.; Efros, A. L. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 2011, 10, 936–941.

    Article  Google Scholar 

  16. Mahler, B.; Nadal, B.; Bouet, C.; Patriarche, G.; Dubertret, B. Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 2012, 134, 18591–18598.

    Article  Google Scholar 

  17. Pelton, M.; Ithurria, S.; Schaller, R. D.; Dolzhnikov, D. S.; Talapin, D. V. Carrier cooling in colloidal quantum wells. Nano Lett. 2012, 12, 6158–6163.

    Article  Google Scholar 

  18. Joo, J.; Son, J. S.; Kwon, S. G.; Yu, J. H.; Hyeon, T. Low-temperature solution-phase synthesis of quantum well structured CdSe nanoribbons. J. Am. Chem. Soc. 2006, 128, 5632–5633.

    Article  Google Scholar 

  19. Ithurria, S.; Dubertret, B. Quasi 2D colloidal CdSe platelets with thicknesses controlled at the atomic level. J. Am. Chem. Soc. 2008, 130, 16504–16505.

    Article  Google Scholar 

  20. Tessier, M. D.; Javaux, C.; Maksimovic, I.; Loriette, V.; Dubertret, B. Spectroscopy of single CdSe nanoplatelets. ACS Nano 2012, 6, 6751–6758.

    Article  Google Scholar 

  21. Hines, M. A.; Guyot-Sionnest, P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 1996, 100, 468–471.

    Article  Google Scholar 

  22. Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

    Article  Google Scholar 

  23. de Mello Donegá, C. Synthesis and properties of colloidal heteronanocrystals. Chem. Soc. Rev. 2011, 40, 1512–1546.

    Article  Google Scholar 

  24. Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.-P.; Dubertret, B. Towards non-blinking colloidal quantum dots. Nat. Mater. 2008, 7, 659–664.

    Article  Google Scholar 

  25. Chen, Y. F.; Vela, J.; Htoon, H.; Casson, J. L.; Werder, D. J.; Bussian, D. A.; Klimov, V. I.; Hollingsworth, J. A. "Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 2008, 130, 5026–5027.

    Article  Google Scholar 

  26. Biadala, L.; Liu, F.; Tessier, M. D.; Yakovlev, D. R.; Dubertret, B.; Bayer, M. Recombination dynamics of band edge excitons in quasi-two-dimensional CdSe nanoplatelets. Nano Lett. 2014, 14, 1134–1139.

    Article  Google Scholar 

  27. Olutas, M.; Guzelturk, B.; Kelestemur, Y.; Yeltik, A.; Delikanli, S.; Demir, H. V. Lateral size-dependent spontaneous and stimulated emission properties in colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 5041–5050.

    Article  Google Scholar 

  28. She, C. X.; Fedin, I.; Dolzhnikov, D. S.; Dahlberg, P. D.; Engel, G. S.; Schaller, R. D.; Talapin, D. V. Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 2015, 9, 9475–9485.

    Article  Google Scholar 

  29. Achtstein, A. W.; Scott, R.; Kickhöfel, S.; Jagsch, S. T.; Christodoulou, S.; Bertrand, G. H. V.; Prudnikau, A. V.; Antanovich, A.; Artemyev, M.; Moreels, I.; Schliwa, A.; Woggon, U. p-State luminescence in CdSe nanoplatelets: Role of lateral confinement and a longitudinal optical phonon bottleneck. Phys. Rev. Lett. 2016, 116, 116802.

    Article  Google Scholar 

  30. Cunningham, P. D.; Souza, J. B. Jr.; Fedin, I.; She, C. X.; Lee, B.; Talapin, D. V. Assessment of anisotropic semiconductor nanorod and nanoplatelet heterostructures with polarized emission for liquid crystal display technology. ACS Nano 2016, 10, 5769–5781.

    Article  Google Scholar 

  31. Beaudoin, E.; Abecassis, B.; Constantin, D.; Degrouard, J.; Davidson, P. Strain-controlled fluorescence polarization in a CdSe nanoplatelet-block copolymer composite. Chem. Commun. 2015, 51, 4051–4054.

    Article  Google Scholar 

  32. Gippius, N. A.; Tikhodeev, S. G.; Kulakovskiǐ, V. D.; Forchel, A. Optical polarization effects in semiconductor/vacuum nanostructures. JETP Lett. 1994, 59, 556–559.

    Google Scholar 

  33. Rodina, A. V.; Efros, A. L. Effect of dielectric confinement on optical properties of colloidal nanostructures. J. Exp. Theor. Phys. 2016, 122, 554–566.

    Article  Google Scholar 

  34. Tessier, M. D.; Mahler, B.; Nadal, B.; Heuclin, H.; Pedetti, S.; Dubertret, B. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 2013, 13, 3321–3328.

    Article  Google Scholar 

  35. Bouet, C.; Mahler, B.; Nadal, B.; Abecassis, B.; Tessier, M. D.; Ithurria, S.; Xu, X. Z.; Dubertret, B. Two-dimensional growth of CdSe nanocrystals, from nanoplatelets to nanosheets. Chem. Mater. 2013, 25, 639–645.

    Article  Google Scholar 

  36. Pelliser, L.; Manceau, M.; Lethiec, C.; Coursault, D.; Vezzoli, S; Leménager, G.; Coolen, L.; DeVittorio, M.; Pisanello, F.; Carbone, L. et al. Alignment of rod-shaped single-photon emitters driven by line defects in liquid crystals. Adv. Funct. Mater. 2015, 25, 1719–1726.

    Article  Google Scholar 

  37. Lukosz, W. Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation. J. Opt. Soc. Am. 1979, 69, 1495–1503.

    Article  Google Scholar 

  38. Novotny, L. Principles of Nano-Optics; Cambridge University Press: Cambridge, 2006.

    Book  Google Scholar 

  39. Chuang, S. L. Physics of Optoelectronic Devices; Wiley-Interscience: New York, 1995.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale de la Recherche (project JCJC 12-JS04-0011-01 PONIMI), the Centre de Compétence Nanosciences Ile-de-France (Patch project) and by the CNRS program Platon (PICS 6456). Among their co-workers at INSP, the authors would like to thank Catherine Schwob and Jean-Marc Frigerio for fruitful discussions, Willy Daney de Marcillac for his help on the microscopy setup, Francis Breton for the setup interface and Loïc Becerra and Mélanie Escudier for the substrate preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Maître.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Nguyen, L.T., Nasilowski, M. et al. Consequence of shape elongation on emission asymmetry for colloidal CdSe/CdS nanoplatelets. Nano Res. 11, 3593–3602 (2018). https://doi.org/10.1007/s12274-017-1926-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1926-3

Keywords

Navigation