Skip to main content
Log in

Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Mesoporous Mn-Sn bimetallic oxide (BO) nanocubes with sizes of 15–30 nm show outstanding stable and reversible capacities in lithium ion batteries (LIBs), reaching 856.8 mAh·g–1 after 400 cycles at 500 mA·g–1 and 506 mAh·g–1 after 850 cycles at 1,000 mA·g–1. The preliminary investigation of the reaction mechanism, based on X-ray diffraction measurements, indicates the occurrence of both conversion and alloying–dealloying reactions in the Mn-Sn bimetallic oxide electrode. Moreover, Mn-Sn BO//LiCoO2 Li-ion full cells were successfully assembled for the first time, and found to deliver a relatively high energy density of 176.25 Wh·kg–1 at 16.35 W·kg–1 (based on the total weight of anode and cathode materials). The superior long-term stability of these materials might be attributed to their nanoscale size and unique mesoporous nanocubic structure, which provide short Li+ diffusion pathways and a high contact area between electrolyte and active material. In addition, the Mn-Sn BOs could be used as advanced sulfur hosts for lithium-sulfur batteries, owing to their adequate mesoporous structure and relatively strong chemisorption of lithium polysulfide. The present results thus highlight the promising potential of mesoporous Mn-Sn bimetallic oxides for application in Li-ion and Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, B.; Chen, S. Q.; Liu, H.; Wang, G. X. Mesoporous carbon nanocube architecture for high-performance lithiumoxygen batteries. Adv. Funct. Mater. 2015, 25, 4436–4444.

    Article  Google Scholar 

  2. Deori, K.; Gupta, D.; Saha, B.; Sasanka, D. Design of 3-dimensionally self-assembled CeO2 nan°Cube as a breakthrough catalyst for efficient alkylarene oxidation in water. ACS Catal. 2014, 4, 3169–3179.

    Article  Google Scholar 

  3. Lü, Y. Y.; Zhan, W. W.; He, Y.; Wang, Y. T.; Kong, X. J.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. ACS Appl. Mater. Interfaces 2014, 6, 4186–4195.

    Article  Google Scholar 

  4. Li, G. D.; Yu, H. X.; Xu, L. Q.; Ma, Q.; Chen, C.; Hao, Q.; Qian, Y. T. General synthesis of carbon nanocages and their adsorption of toxic compounds from cigarette smoke. Nanoscale 2011, 3, 3251–3257.

    Article  Google Scholar 

  5. Yan, S. C.; Wang, J. J.; Gao, H. L.; Wang, N. Y.; He, Y.; Li, Z. S.; Zhou, Y.; Zhou, Z. G. An ion-exchange phase transformation to ZnGa2O4 nanocube towards efficient solar fuel synthesis. Adv. Funct. Mater. 2013, 23, 758–763.

    Article  Google Scholar 

  6. Ju, Z. C.; Zhang, E.; Zhao, Y. L.; Xing, Z.; Zhuang, Q. C.; Qiang, Y. H.; Qian, Y. T. One-pot hydrothermal synthesis of FeMoO4 nan°Cubes as an anode material for lithium-ion batteries with excellent electrochemical performance. Small 2015, 11, 4753–4761.

    Article  Google Scholar 

  7. Xu, J. M.; Wu, J. S.; Luo, L. L.; Chen, X. Q.; Qin, H. B.; Dravid, V.; Mi, S. B.; Jia, C. L. Co3O4 nanocubes homogeneously assembled on few-layer graphene for high energy density lithium-ion batteries. J. Power Sources 2015, 274, 816–822.

    Article  Google Scholar 

  8. Kang, W. P.; Tang, Y. B.; Li, W. Y.; Li, Z. P.; Yang, X.; Xu, J.; Lee, C. S. Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale 2014, 6, 6551–6556.

    Article  Google Scholar 

  9. Yan, N.; Wang, F.; Zhong, H.; Li, Y.; Wang, Y.; Hu, L.; Chen, Q. W. Hollow porous SiO2 nanocubes towards highperformance anodes for lithium-ion batteries. Sci. Rep. 2013, 3, 1568–1573.

    Article  Google Scholar 

  10. Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.

    Article  Google Scholar 

  11. Idota, Y.; Kubota, T.; Matsufuji, A.; Maekawa, Y.; Miyasaka, T. Tin-based amorphous oxide: A high-capacity lithiumion-storage material. Science 1997, 276, 1395–1397.

    Article  Google Scholar 

  12. He, Y. Y.; Li, A. H.; Dong, C. F.; Li, C. C.; Xu, L. Q. Mesoporous tin-based oxide nanospheres/reduced graphene composites as advanced anodes for lithium-ion half/full cells and sodium-ion batteries. Chem.—Eur. J. 2017, 23, 13724–13733.

    Article  Google Scholar 

  13. Park, G. D.; Lee, J. K.; Kang, Y. C. Synthesis of uniquely structured SnO2 hollow nanoplates and their electrochemical properties for Li-ion storage. Adv. Funct. Mater. 2017, 27, 1603399.

    Article  Google Scholar 

  14. Zhang, R. R.; He, Y. Y.; Xu, L. Q. Controllable synthesis of hierarchical ZnSn(OH)6 and Zn2SnO4 hollow nanospheres and their applications as anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 17979–17985.

    Article  Google Scholar 

  15. Zhang, J. J.; Liang, J. W.; Zhu, Y. C.; Wei, D. H.; Fan, L.; Qian, Y. T. Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 2728–2734.

    Article  Google Scholar 

  16. Lei, S. J.; Tang, K. B.; Chen, C. H.; Jin, Y.; Zhou, L. Preparation of Mn2SnO4 nanoparticles as the anode material for lithium secondary battery. Mater. Res. Bull. 2009, 44, 393–397.

    Article  Google Scholar 

  17. Han, F.; Li, W. C.; Lei, C.; He, B.; Oshida, K.; Lu, A. H. Selective formation of carbon-coated, metastable amorphous ZnSnO3 nanocubes containing mesopores for use as highcapacity lithium-ion battery. Small 2014, 10, 2637–2644.

    Article  Google Scholar 

  18. Wang, Z. Y.; Wang, Z. C.; Liu, W. T.; Xiao, W. X.; Lou, X. W. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 2013, 6, 87–91.

    Article  Google Scholar 

  19. Yuan, Z. Y.; Huang, F.; Sun, J. T.; Zhou, Y. H. Synthesis and characterization of amorphous nanosized MnSnO3 as a high capacity anode material for lithium ion batteries. J. Mater. Sci. Lett. 2003, 22, 143–144.

    Article  Google Scholar 

  20. Zhang, R. X.; Fang, G. Q.; Liu, W. W.; Xia, B. B.; Sun, H. D.; Zheng, J. W.; Li, D. C. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries. Appl. Surf. Sci. 2014, 292, 682–687.

    Article  Google Scholar 

  21. Fan, L.; Zhu, Y. C.; Zhang, J. J.; Liang, J. W.; Wang, L. L.; Wei, D. H.; Li, X. N.; Qian, Y. T. Uniformly dispersed Sn-MnO@C nanocomposite derived from MnSn(OH)6 precursor as anode material for lithium-ion batteries. Electrochim. Acta 2014, 121, 21–26.

    Article  Google Scholar 

  22. Liu, P.; Hao, Q. L.; Xia, X. F.; Wu, L.; Xia, H.; Chen, Z. Y.; Wang, X. Hollow amorphous MnSnO3 nanohybrid with nitrogen-doped graphene for high-performance lithium storage. Electrochim. Acta 2016, 214, 1–10.

    Article  Google Scholar 

  23. Liang, K.; Cheang, T. K.; Wen, T.; Xie, X.; Zhou, X.; Zhao, Z. W.; Shen, C. C.; Jiang, N.; Xu, A. W. Facile preparation of porous Mn2SnO4/Sn/C composite cubes as high performance anode material for lithium-ion batteries. J. Phys. Chem. C 2016, 120, 3669–3676.

    Article  Google Scholar 

  24. Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

    Article  Google Scholar 

  25. Zhang, L. P.; Wang, Y. F.; Gou, S. Q.; Zeng, J. H. All inorganic frameworks of tin dioxide shell as cathode material for lithium sulfur batteries with improved cycle performance. J. Phys. Chem. C 2015, 119, 28721–28727.

    Article  Google Scholar 

  26. Liu, J.; Yuan, L. X.; Yuan, K.; Li, Z.; Hao, Z. X.; Xiang, J. W.; Huang, Y. H. SnO2 as a high-efficiency polysulfide trap in lithium-sulfur batteries. Nanoscale 2016, 8, 13638–13645.

    Article  Google Scholar 

  27. Cao, B. K.; Li, D.; Hou, B.; Mo, Y.; Yin, L. H.; Chen, Y. Synthesis of double-shell SnO2@C hollow nanospheres as sulfur/sulfide cages for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 27795–27802.

    Article  Google Scholar 

  28. Li, Z.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12886–12890.

    Article  Google Scholar 

  29. Zhang, J.; Shi, Y.; Ding, Y.; Zhang, W. K.; Yu, G. H. In situ reactive synthesis of polypyrrole-MnO2 coaxial nanotubes as sulfur hosts for high-performance lithium-sulfur battery. Nano Lett. 2016, 16, 7276–7281.

    Article  Google Scholar 

  30. Li, Y.; Ye, D. X.; Liu, W.; Shi, B.; Guo, R.; Zhao, H. B.; Pei, H. J.; Xu, J. Q.; Xie, J. Y. A MnO2/graphene oxide/ multi-walled carbon nanotubes-sulfur composite with dualefficient polysulfide adsorption for improving lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 28566–28573.

    Article  Google Scholar 

  31. Sun, W.; Qu, X. G.; Yue, X. Y.; Yang, Y. X.; Wang, Z. H.; Dvaid, R.; Sun, K. N. A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 207, 198–206.

    Article  Google Scholar 

  32. Wang, S. P.; Yang, Z. G.; Zhang, H. Y.; Tan, H. B.; Yu, J. X.; Wu, J. P. Mesoporous β-MnO2/sulfur composite as cathode material for Li-S batteries. Electrochim. Acta 2013, 106, 307–311.

    Article  Google Scholar 

  33. Wang, X. L.; Li, G.; Li, J. D.; Zhang, Y. N.; Wook, A.; Yu, A. P.; Chen, Z. W. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithiumsulfur batteries. Energy Environ. Sci. 2016, 9, 2533–2538.

    Article  Google Scholar 

  34. Hou, Y. P.; Mao, H. Z.; Xu, L. Q. MIL-100(V) and MIL-100(V)/rGO with various valence states of vanadium ions as sulfur cathode hosts for lithium-sulfur batteries. Nano Res. 2017, 10, 344–353.

    Article  Google Scholar 

  35. Wang, X. L.; Li, G.; Hassan, F. M.; Li, J. D.; Fan, X. Y.; Batmaz, R.; Xiao, X. C.; Chen, Z. W. Sulfur covalently bonded graphene with large capacity and high rate for highperformance sodium-ion batteries anodes. Nano Energy 2015, 15, 746–754.

    Article  Google Scholar 

  36. He, Y. Y.; Xu, L. Q.; Zhai, Y. J.; Li, A. H.; Chen, X. X. A hexangular ring-core NiCo2O4 porous nanosheet/NiO nanoparticle composite as an advanced anode material for LIBs and catalyst for CO oxidation applications. Chem. Commun. 2015, 51, 14768–14771.

    Article  Google Scholar 

  37. Sharma, Y.; Sharma, N.; Subba Rao, G. V.; Chowdari, B. V. R. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 2007, 17, 2855–2861.

    Article  Google Scholar 

  38. Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanisms and high performances as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116–1127.

    Article  Google Scholar 

  39. Dong, C. F.; Xu, L. Q. Cobalt- and cadmium-based metalorganic frameworks as high-performance anodes for sodium ion batteries and lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7160–7168.

    Article  Google Scholar 

  40. Su, H.; Xu, Y. F.; Feng, S. C.; Wu, Z. G.; Sun, X. P.; Shen, C. H.; Wang, J. Q.; Li, J. T.; Huang, L.; Sun, S. G. Hierarchical Mn2O3 hollow microspheres as anode material of lithium ion battery and its conversion reaction mechanism investigated by XANES. ACS Appl. Mater. Interfaces 2015, 7, 8488–8494.

    Article  Google Scholar 

  41. Li, A. H.; Xu, L. Q.; Li, S. L.; He, Y. Y.; Zhang, R. R.; Zhai, Y. J. One-dimensional manganese borate hydroxide nanorods and the corresponding manganese oxyborate nanorods as promising anodes for lithium ion batteries. Nano Res. 2015, 8, 554–565.

    Article  Google Scholar 

  42. Chen, X. F.; Huang, Y.; Huang, H. J.; Wang, M. Y.; Wang, K. Silver-modified hollow ZnSnO3 boxes as high capacity anode materials for Li-ion batteries. Mater. Lett. 2015, 149, 33–36.

    Article  Google Scholar 

  43. Chen, H.; Chen, C.; Liu, Y. J.; Zhao, X. L.; Ananth, N.; Zheng, B. N.; Peng, L.; Huang, T. Q.; Gao, W. W.; Gao, C. High-quality graphene microflower design for high-performance Li-S and Al-ion batteries. Adv. Energy Mater. 2017, 7, 1700051.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the financial support from the National Nature Science Foundation of China (No. 21471091), Academy of Sciences large apparatus United Fund (No. 11179043), the Fundamental Research Funds of Shandong University (No. 2015JC007), and the Taishan Scholar Project of Shandong Province (No. ts201511004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Xu.

Electronic supplementary material

12274_2017_1921_MOESM1_ESM.pdf

Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Xu, L., Li, C. et al. Mesoporous Mn-Sn bimetallic oxide nanocubes as long cycle life anodes for Li-ion half/full cells and sulfur hosts for Li-S batteries. Nano Res. 11, 3555–3566 (2018). https://doi.org/10.1007/s12274-017-1921-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1921-8

Keywords

Navigation