Skip to main content
Log in

Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The benefits of reinforcing polyimide (PI) films with boron nitride (BN) particles and boron nitride nanosheets (BNNSs) were assessed with the aim of enhancing their thermal, optical, and mechanical properties for flexible device applications. BNNSs were prepared from BN particles using a liquid-phase exfoliation method assisted by an ultrasonic probe-type sonicator and centrifugator. PI-based composite films blended with BNNSs and BN particles were fabricated at various concentrations via mechanical stirring and spin coating. The transparency of the PI/BNNS composite films remained almost the same as that of pure PI films up to 3 wt.% whereas the transparency of the PI/BN composite films decreased with increasing concentration of the BN fillers at 550 nm. The thermal stability improved significantly with increasing concentrations of both BN and BNNS relative to that of pure PI films. The temperature for 5% weight loss of the PI/BNNS composite film was higher than that of the PI/BN composite film at the same filler concentration. The composite films with 2 wt.% BN or BNNS showed the lowest wear rate, and the PI/BNNS composite films showed more stable frictional behavior compared to the PI/BN composite films. In addition, bending tests showed that the PI/BNNS composite films exhibited excellent flexibility compared to the PI/BN composite films. Overall, the results indicate that the BNNS can be effectively used as a filler that can enhance the thermal and mechanical properties of polymer materials for flexible device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kizilkaya, C.; Mülazim, Y.; Kahraman, M. V.; Kayaman-Apohan, N.; Güngör, A. Synthesis and characterization of polyimide/hexagonal boron nitride composite. J. Appl. Polym. Sci. 2012, 124, 706–712.

    Article  Google Scholar 

  2. Choi, M. C.; Kim, Y.; Ha, C. S. Polymers for flexible displays: From material selection to device applications. Prog. Polym. Sci. 2008, 33, 581–630.

    Article  Google Scholar 

  3. Tsai, M. H.; Tseng, I. H.; Chiang, J. C.; Li, J. J. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability. ACS Appl. Mater. Interfaces 2014, 6, 8639–8645.

    Article  Google Scholar 

  4. Li, T. L.; Hsu, S. L. C. Enhanced thermal conductivity of polyimide films via a hybrid of micro-and nano-sized boron nitride. J. Phys. Chem. B 2010, 114, 6825–6829.

    Article  Google Scholar 

  5. Diaham, S.; Saysouk, F.; Locatelli, M. L.; Belkerk, B.; Scudeller, Y.; Chiriac, R.; Francois, T.; Salles, V. Thermal conductivity of polyimide/boron nitride nanocomposite films. J. Appl. Polym. Sci. 2015, 132, DOI: 10.1002/app.42461.

  6. Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces. J. Mater. Chem. 2010, 20, 2749–2752.

    Article  Google Scholar 

  7. Hou, J.; Li, G. H.; Yang, N.; Qin, L. L.; Grami, M. E.; Zhang, Q. X.; Wang, N. Y.; Qu, X. W. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014, 4, 44282–44290.

    Article  Google Scholar 

  8. Dai, W.; Yu, J. H.; Wang, Y.; Song, Y. Z.; Bai, H.; Nishimura, K.; Liao, H. W.; Jiang, N. Enhanced thermal and mechanical properties of polyimide/graphene composites. Macromol. Res. 2014, 22, 983–989.

    Article  Google Scholar 

  9. Henry, A.; Chen, G. High thermal conductivity of single polyethylene chains using molecular dynamics simulations. Phys. Rev. Lett. 2008, 101, 235502.

    Article  Google Scholar 

  10. Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Enhanced thermal conductivity of polymer composites filled with hybrid filler. Compos. Pt. A-Appl. Sci. Manuf. 2006, 37, 727–734.

    Article  Google Scholar 

  11. Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 2010, 3, 138–145.

    Article  Google Scholar 

  12. Yoo, D.; Kim, J.; Kim, J. H. Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene): Poly(4styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 2014, 7, 717–730.

    Article  Google Scholar 

  13. Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675–684.

    Article  Google Scholar 

  14. Chu, C. R.; Lee, C.; Koo, J.; Lee, H. M. Fabrication of sintering-free flexible copper nanowire/polymer composite transparent electrodes with enhanced chemical and mechanical stability. Nano Res. 2016, 9, 2162–2173.

    Article  Google Scholar 

  15. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  Google Scholar 

  16. Zeng, H. B.; Zhi, C. Y.; Zhang, Z. H.; Wei, X. L.; Wang, X. B.; Guo, W. L.; Bando, Y.; Golberg, D. “White graphenes”: Boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 2010, 10, 5049–5055.

    Article  Google Scholar 

  17. Penkov, O.; Kim, H. J.; Kim, H. J.; Kim, D. E. Tribology of graphene: A review. Int. J. Precis. Eng. Manuf. 2014, 15, 577–585.

    Article  Google Scholar 

  18. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  Google Scholar 

  19. Kim, C. M.; Park, S. J.; Kim, G. M. Applications of PLGA microcarriers prepared using geometrically passive breakup on microfluidic chip. Int. J. Precis. Eng. Manuf. 2015, 16, 2545–2551.

    Article  Google Scholar 

  20. Xu, Y. F.; Wang, Y.; Liang, J. J.; Huang, Y.; Ma, Y. F.; Wan, X. J.; Chen, Y. S. A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2009, 2, 343–348.

    Article  Google Scholar 

  21. Zhang, S. J.; Lian, G.; Si, H. B.; Wang, J.; Zhang, X.; Wang, Q. L.; Cui, D. L. Ultrathin BN nanosheets with zigzag edge: One-step chemical synthesis, applications in wastewater treatment and preparation of highly thermal-conductive BN–polymer composites. J. Mater. Chem. A 2013, 1, 5105–5112.

    Article  Google Scholar 

  22. Wang, X. B.; Pakdel, A.; Zhang, J.; Weng, Q. H.; Zhai, T. Y.; Zhi, C. Y.; Golberg, D.; Bando, Y. Large-surface-area BN nanosheets and their utilization in polymeric composites with improved thermal and dielectric properties. Nanoscale Res. Lett. 2012, 7, 662.

    Article  Google Scholar 

  23. Jan, R.; May, P.; Bell, A. P.; Habib, A.; Khan, U.; Coleman, J. N. Enhancing the mechanical properties of BN nanosheet–polymer composites by uniaxial drawing. Nanoscale 2014, 6, 4889–4895.

    Article  Google Scholar 

  24. Ling, W.; Gu, A. J.; Liang, G. Z.; Yuan, L. New composites with high thermal conductivity and low dielectric constant for microelectronic packaging. Polym. Compos. 2010, 31, 307–313.

    Google Scholar 

  25. Khan, U.; May, P.; O’Neill, A.; Bell, A. P.; Boussac, E.; Martin, A.; Semple, J.; Coleman, J. N. Polymer reinforcement using liquid-exfoliated boron nitride nanosheets. Nanoscale 2013, 5, 581–587.

    Article  Google Scholar 

  26. Lin, Y. C.; Lu, N.; Perea-Lopez, N.; Li, J.; Lin, Z.; Peng, X.; Lee, C. H.; Sun, C.; Calderin, L.; Browning, P. N. et al. Direct synthesis of van der Waals solids. ACS Nano 2014, 8, 3715–3723.

    Article  Google Scholar 

  27. Lin, Z.; Mcnamara, A.; Liu, Y.; Moon, K. S.; Wong, C. P. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos. Sci. Technol. 2014, 90, 123–128.

    Article  Google Scholar 

  28. Xu, Y. S.; Chung, D. D. L.; Mroz, C. Thermally conducting aluminum nitride polymer-matrix composites. Compos. Pt. A-Appl. Sci. Manuf. 2001, 32, 1749–1757.

    Article  Google Scholar 

  29. Song, W. L.; Wang, P.; Cao, L.; Anderson, A.; Meziani, M. J.; Farr, A. J.; Sun, Y. P. Polymer/boron nitride nanocomposite materials for superior thermal transport performance. Angew. Chem., Int. Ed. 2012, 51, 6498–6501.

    Article  Google Scholar 

  30. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.

    Article  Google Scholar 

  31. Lin, Y.; Williams, T. V.; Xu, T. B.; Cao, W.; Elsayed-Ali, H. E.; Connell, J. W. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: Critical role of water. J. Phys. Chem. C 2011, 115, 2679–2685.

    Article  Google Scholar 

  32. Kuang, Z. Q.; Chen, Y. L.; Lu, Y. L.; Liu, L.; Hu, S.; Wen, S. P.; Mao, Y. Y.; Zhang, L. Q. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 2015, 11, 1655–1659.

    Article  Google Scholar 

  33. Huang, T.; Xin, Y. S.; Li, T. S.; Nutt, S.; Su, C.; Chen, H. M.; Liu, P.; Lai, Z. L. Modified graphene/polyimide nanocomposites: Reinforcing and tribological effects. ACS Appl. Mater. Interfaces 2013, 5, 4878–4891.

    Article  Google Scholar 

  34. Lee, D. J.; Song, S. H.; Hwang, J.; Jin, S. H.; Park, K. H.; Kim, B. H.; Hong, S. H.; Jeon, S. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes. Small 2013, 9, 2602–2610.

    Article  Google Scholar 

  35. Chen, D.; Zhu, H.; Liu, T. X. In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl. Mater. Interfaces 2010, 2, 3702–3708.

    Article  Google Scholar 

  36. Chen, Y. M.; Gao, X.; Wang, J. L.; He, W.; Silberschmidt, V. V.; Wang, S. X.; Tao, Z. H.; Xu, H. Properties and application of polyimide‐based composites by blending surface functionalized boron nitride nanoplates. J. Appl. Poly. Sci. 2015, 132, DOI: 10.1002/app.41889.

  37. Garg, J.; Poudel, B.; Chiesa, M.; Gordon, J. B.; Ma, J. J.; Wang, J. B.; Ren, Z. F.; Kang, Y. T.; Ohtani, H.; Nanda, J. et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 2008, 103, 074301.

    Article  Google Scholar 

  38. Zhang, S.; Cao, X. Y.; Ma, Y. M.; Ke, Y. C.; Zhang, J. K.; Wang, F. S. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym. Lett. 2011, 5, 581–590.

    Article  Google Scholar 

  39. Xing, X. S.; Li, R. K. Y. Wear behavior of epoxy matrix composites filled with uniform sized sub-micron spherical silica particles. Wear 2004, 256, 21–26.

    Article  Google Scholar 

  40. Fischer, T. E.; Zhu, Z.; Kim, H.; Shin, D. S. Genesis and role of wear debris in sliding wear of ceramics. Wear 2000, 245, 53–60.

    Article  Google Scholar 

  41. Kim, H. J.; Shin, D. G.; Kim, D. E. Frictional behavior between silicon and steel coated with graphene oxide in dry sliding and water lubrication conditions. Int. J. Precis. Eng. Manuf.-Green Technol. 2016, 3, 91–97.

    Article  Google Scholar 

  42. Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2011, 39, 507–514.

    Article  Google Scholar 

  43. Pan, B. L.; Li, N.; Chu, G. C.; Wei, F. J.; Liu, J. C.; Zhang, J. K.; Zhang, Y. Z. Tribological investigation of MC PA6 reinforced by boron nitride of single layer. Tribol. Lett. 2014, 54, 161–170.

    Article  Google Scholar 

  44. Reeves, C. J.; Menezes, P. L.; Lovell, M. R.; Jen, T. C. The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol. Lett. 2013, 51, 437–452.

    Article  Google Scholar 

  45. Shin, Y.; Xiao, H. P.; Liang, H. A novel composite with nacreous reinforcement for corrosion and wear reduction. J. Tribol. 2015, 137, 021602.

    Article  Google Scholar 

  46. Lahiri, D.; Singh, V.; Benaduce, A. P.; Seal, S.; Kos, L.; Agarwal, A. Boron nitride nanotube reinforced hydroxyapatite composite: Mechanical and tribological performance and in-vitro biocompatibility to osteoblasts. J. Mech. Behav. Biomed. Mater. 2011, 4, 44–56.

    Article  Google Scholar 

  47. Mosanenzadeh, S. G.; Khalid, S.; Cui, Y.; Naguib, H. E. High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene nanoplatelets. Polym. Compos. 2016, 37, 2196–2205.

    Article  Google Scholar 

  48. Kinloch, A. J.; Taylor, A. C. The mechanical properties and fracture behaviour of epoxy-inorganic micro-and nanocomposites. J. Mater. Sci. 2006, 41, 3271–3297.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2010-0018289).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, Y.J., Kang, KH. & Kim, DE. Development of polyimide films reinforced with boron nitride and boron nitride nanosheets for transparent flexible device applications. Nano Res. 11, 2366–2378 (2018). https://doi.org/10.1007/s12274-017-1856-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1856-0

Keywords

Navigation