Skip to main content
Log in

Ion separation and water purification by applying external electric field on porous graphene membrane

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Using molecular dynamics (MD) simulations, a porous graphene membrane was exposed to external electric fields to separate positive and negative ions from salt-water and to produce fresh water. It was observed that, by increasing the strength of the applied electric field, ion separation improved noticeably. In addition, to obtain fresh water, the designed system included two graphene membranes, which are exposed to two external electric fields in opposite directions. Ion rejection was found to be greater than 93% for the electric field of 10 mV/Å and higher. This atomic-level simulation increases the understanding of electric field effects on desalination using multilayer graphene membranes and can be helpful in designing more efficient membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hu, Z. Q.; Chen, Y. F.; Jiang, J. W. Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: Insight from molecular simulation. J. Chem. Phys. 2011, 134, 134705.

    Article  Google Scholar 

  2. Gupta, K. M.; Zhang, K.; Jiang, J. W. Water desalination through zeolitic imidazolate framework membranes: Significant role of functional groups. Langmuir 2015, 31, 13230–13237.

    Article  Google Scholar 

  3. Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Covalent triazine frameworks prepared from 1,3,5- tricyanobenzene. Chem. Mater. 2013, 25, 1542–1548.

    Article  Google Scholar 

  4. Lin, L. C.; Cho, J.; Grossman, J. C. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chem. Commun. 2015, 51, 14921–14924.

    Article  Google Scholar 

  5. Zhao, K. W.; Wu, H. Y. Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett. 2015, 15, 3664–3668.

    Article  Google Scholar 

  6. Das, R.; Ali, M. E.; Hamid, S. B. A.; Ramakrishna, S.; Chowdhury, Z. Z. Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination 2014, 336, 97–109.

    Article  Google Scholar 

  7. Majumder, M.; Chopra, N.; Andrews, R.; Hinds, B. J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature 2005, 438, 44.

    Article  Google Scholar 

  8. Kar, S.; Bindal, R. C.; Tewari, P. K. Carbon nanotube membranes for desalination and water purification: Challenges and opportunities. Nanotoday 2012, 7, 385–389.

    Article  Google Scholar 

  9. Fornasiero, F.; In, J. B.; Kim, S.; Park, H. G.; Wang, Y. M.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. pH-tunable ion selectivity in carbon nanotube pores. Langmuir 2010, 26, 14848–14853.

    Article  Google Scholar 

  10. Oyama, S. T.; Stagg-Williams, S. M. Inorganic, Polymeric and Composite Membranes; Elsevier: Amsterdam, The Netherlands, 2011.

    Google Scholar 

  11. Cohen-Tanugi, D.; Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12, 3602–3608.

    Article  Google Scholar 

  12. Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Unimpeded permeation of water through heliumleak-tight graphene-based membranes. Science 2012, 335, 442–444.

    Article  Google Scholar 

  13. Surwade, S. P.; Smirnov, S. N.; Vlassiouk, I. V.; Unocic, R. R.; Veith, G. M.; Dai, S.; Mahurin, S. M. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 2015, 10, 459–464.

    Article  Google Scholar 

  14. Song, B.; Zhang, C.; Zeng, G. M.; Gong, J. L.; Chang, Y. N.; Jiang, Y. Antibacterial properties and mechanism of graphene oxide-silver nanocomposites as bactericidal agents for water disinfection. Archiv. Biochem. Biophys. 2016, 604, 167–176.

    Article  Google Scholar 

  15. Lattemann, S.; Hoepner, T. Environmental impact and impact assessment of seawater desalination. Desalination 2008, 220, 1–15.

    Article  Google Scholar 

  16. Song, B.; Zeng, G. M.; Gong, J. L.; Liang, J.; Xu, P.; Liu, Z. F.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y. et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55.

    Article  Google Scholar 

  17. Ritos, K.; Borg, M. K.; Mottram, N. J.; Reese, J. M. Electric fields can control the transport of water in carbon nanotubes. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2016, 374, 20150025.

    Article  Google Scholar 

  18. Su, J. Y.; Guo, H. X. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field. ACS Nano 2011, 5, 351–359.

    Article  Google Scholar 

  19. Ghadamgahi, M.; Ajloo, D. Molecular dynamics simulation of the water transportation through a carbon nanotube. The effect of electric field. Russ. J. Phys. Chem. A 2015, 89, 2120–2125.

    Article  Google Scholar 

  20. Rinne, K. F.; Gekle, S.; Bonthuis, D. J.; Netz, R. R. Nanoscale pumping of water by AC electric fields. Nano Lett. 2012, 12, 1780–1783.

    Article  Google Scholar 

  21. Meng, X. W.; Wang, Y.; Zhao, Y. J.; Huang, J. P. Gating of a water nanochannel driven by dipolar molecules. J Phys. Chem. B 2011, 115, 4768–4773.

    Article  Google Scholar 

  22. Li, X. P.; Kong, G. P.; Zhang, X.; He, G. W. Pumping of water through carbon nanotubes by rotating electric field and rotating magnetic field. Appl. Phys. Lett. 2013, 103, 143117.

    Article  Google Scholar 

  23. Rikhtehgaran, S.; Lohrasebi, A. Water desalination by a designed nanofilter of graphene-charged carbon nanotube: A molecular dynamics study. Desalination 2015, 365, 176–181.

    Article  Google Scholar 

  24. Figueras, L.; Faraudo, J. Competition between hydrogen bonding and electric field in single-file transport of water in carbon nanotubes. Mol. Simul. 2012, 38, 23–25.

    Article  Google Scholar 

  25. Zhu, J. Z.; Lan, Y. Q.; Du, H. J.; Zhang, Y. H.; Su, J. G. Tuning water transport through nanochannels by changing the direction of an external electric field. Phys. Chem. Chem. Phys. 2016, 18, 17991–17996.

    Article  Google Scholar 

  26. Winarto; Takaiwa, D.; Yamamoto, E.; Yasuoka, K. Structures of water molecules in carbon nanotubes under electric fields. J. Chem. Phys. 2015, 142, 124701.

    Article  Google Scholar 

  27. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19.

    Article  Google Scholar 

  28. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: New York, 1987.

    Google Scholar 

  29. Armstrong, C. M. Reflections on selectivity. In Membrane Transport; Tosteson, D. C. Ed.; Springer: Berlin, Germany, 1989; pp 261–273.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Lohrasebi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohrasebi, A., Rikhtehgaran, S. Ion separation and water purification by applying external electric field on porous graphene membrane. Nano Res. 11, 2229–2236 (2018). https://doi.org/10.1007/s12274-017-1842-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1842-6

Keywords

Navigation