Skip to main content
Log in

In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atomically dispersed catalysts have attracted attention in energy conversion applications because their efficiency and chemoselectivity for special catalysis are superior to those of traditional catalysts. However, they have limitations owing to the extremely low metal-loading content on supports, difficulty in the precise control of the metal location and amount as well as low stability at high temperatures. We prepared a highly doped single metal atom hybrid via a single-step thermal pyrolysis of glucose, dicyandiamide, and inorganic metal salts. High-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS) revealed that nitrogen atoms doped into the graphene matrix were pivotal for metal atom stabilization by generating a metal-Nx coordination structure. Due to the strong anchoring effect of the graphene matrix, the metal loading content was over 4 wt.% in the isolated atomic hybrid (the Pt content was as high as 9.26 wt.% in the Pt-doped hybrid). Furthermore, the single iron-doped hybrid (Fe@N-doped graphene) showed a remarkable electrocatalytic performance for the oxygen reduction reaction. The peak power density was ∼199 mW·cm−2 at a current density of 310 mA·cm−2 and superior to that of a commercial Pt/C catalyst when it was used as a cathode catalyst in assembled zinc-air batteries. This work offered a feasible approach to design and fabricate highly doped single metal atoms (SMAs) catalysts for potential energy applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L. C.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132–138.

    Article  Google Scholar 

  2. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–801.

    Article  Google Scholar 

  3. Yan, H.; Cheng, H.; Yi, H.; Lin, Y.; Yao, T.; Wang, C. L.; Li, J. J.; Wei, S. Q.; Lu, J. L. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: Remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487.

    Article  Google Scholar 

  4. Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

    Article  Google Scholar 

  5. Huang, X. H.; Xia, Y. J.; Cao, Y. J.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Ma, C.; Wang, H. W.; Li, J. J.; You, R. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 2017, 10, 1302–1312.

    Article  Google Scholar 

  6. Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Dong Kim, N.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F. M.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

    Article  Google Scholar 

  7. Wei, H. S.; Liu, X. Y.; Wang, A. Q.; Zhang, L. L.; Qiao, B. T.; Yang, X. F.; Huang, Y. Q.; Miao, S.; Liu, J. Y.; Zhang, T. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.

    Article  Google Scholar 

  8. Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  Google Scholar 

  9. Yin, P. Q.; Yao, T.; Wu, Y. E.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.

    Article  Google Scholar 

  10. Chen, X. Q.; Yu, L.; Wang, S. H.; Deng, D. H.; Bao, X. H. Highly active and stable single iron site confined in graphene nanosheets for oxygen reduction reaction. Nano Energy 2017, 32, 353–358.

    Article  Google Scholar 

  11. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

    Article  Google Scholar 

  12. Cheng, N. C.; Stambula, S.; Wang, D.; Banis, M. N.; Liu, J.; Riese, A.; Xiao, B. W.; Li, R. Y.; Sham, T. K.; Liu, L. M. et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat. Commun. 2016, 7, 13638.

    Article  Google Scholar 

  13. Deng, J.; Li, H. B.; Xiao, J. P.; Tu, Y. C.; Deng, D. H.; Yang, H. X.; Tian, H. F.; Li, J. Q.; Ren, P. J.; Bao, X. H. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 2015, 8, 1594–1601.

    Article  Google Scholar 

  14. Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-activity, singlesite mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem., Int. Ed. 2007, 46, 8593–8596.

    Article  Google Scholar 

  15. Matthey, D.; Wang, J. G.; Wendt, S.; Matthiesen, J.; Schaub, R.; Laegsgaard, E.; Hammer, B.; Besenbacher, F. Enhanced bonding of gold nanoparticles on oxidized TiO2(110). Science 2007, 315, 1692–1696.

    Article  Google Scholar 

  16. Kwak, J. H.; Hu, J. Z.; Mei, D. H.; Yi, C. W.; Kim, D. H.; Peden, C. H. F.; Allard, L. F.; Szanyi, J. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 2009, 325, 1670–1673.

    Article  Google Scholar 

  17. Ortalan, V.; Uzun, A.; Gates, B. C.; Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 2010, 5, 506–510.

    Article  Google Scholar 

  18. Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O. 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014, 26, 40–66.

    Article  Google Scholar 

  19. Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

    Article  Google Scholar 

  20. Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  Google Scholar 

  21. Li, X. H.; Kurasch, S.; Kaiser, U.; Antonietti, M. Synthesis of monolayer-patched graphene from glucose. Angew. Chem., Int. Ed. 2012, 51, 9689–9692.

    Article  Google Scholar 

  22. Li, Y. R.; Wang, Z. W.; Xia, T.; Ju, H. X.; Zhang, K.; Long, R.; Xu, Q.; Wang, C. M.; Song, L.; Zhu, J. F. et al. Implementing metal-to-ligand charge transfer in organic semiconductor for improved visible-near-infrared photocatalysis. Adv. Mater. 2016, 28, 6959–6965.

    Article  Google Scholar 

  23. Zhang, G. G.; Huang, C. J.; Wang, X. C. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small 2015, 11, 1215–1221.

    Article  Google Scholar 

  24. Wang, X. C.; Chen, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Metal-containing carbon nitride compounds: A new functional organic-metal hybrid material. Adv. Mater. 2009, 21, 1609–1612.

    Article  Google Scholar 

  25. Midgley, P. A.; Weyland, M. 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 2003, 96, 413–431.

    Article  Google Scholar 

  26. Jiang, H. L.; Yao, Y. F.; Zhu, Y. H.; Liu, Y. Y.; Su, Y. H.; Yang, X. L.; Li, C. Z. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped graphene-like carbon hybrids as efficient bifunctional oxygen electrocatalysts. ACS Appl. Mater. Interfaces 2015, 7, 21511–21520.

    Article  Google Scholar 

  27. Wang, J.; Wang, G. X.; Miao, S.; Jiang, X. L.; Li, J. Y.; Bao, X. H. Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction. Carbon 2014, 75, 381–389.

    Article  Google Scholar 

  28. Liu, X. W.; Zhao, S.; Meng, Y.; Peng, Q.; Dearden, A. K.; Huo, C. F.; Yang, Y.; Li, Y. W.; Wen, X. D. Mössbauer spectroscopy of iron carbides: From prediction to experimental confirmation. Sci. Rep. 2016, 6, 26184.

    Article  Google Scholar 

  29. Vij, V.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Hemoglobin-carbon nanotube derived noble-metal-free Fe5C2-based catalyst for highly efficient oxygen reduction reaction. Sci. Rep. 2016, 6, 20132.

    Article  Google Scholar 

  30. Lin, L.; Zhu, Q.; Xu, A. W. Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J. Am. Chem. Soc. 2014, 136, 11027–11033.

    Article  Google Scholar 

  31. Guo, Z. Y.; Xiao, Z.; Ren, G. Y.; Xiao, G. Z.; Zhu, Y.; Dai, L. M.; Jiang, L. Natural tea-leaf-derived, ternary-doped 3D porous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2016, 9, 1244–1255.

    Article  Google Scholar 

  32. Jiang, W. J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L. J.; Wang, J. Q.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578.

    Article  Google Scholar 

  33. Cao, R. G.; Thapa, R.; Kim, H.; Xu, X. D.; Gyu Kim, M.; Li, Q.; Park, N.; Liu, M. L.; Cho, J. Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 2013, 4, 2076.

    Google Scholar 

  34. Sun, Z. H.; Liu, Q. H.; Yao, T.; Yan, W. S.; Wei, S. Q. X-ray absorption fine structure spectroscopy in nanomaterials. Sci. China Mater. 2015, 58, 313–341.

    Article  Google Scholar 

  35. Zhou, J. G.; Duchesne, P. N.; Hu, Y. F.; Wang, J.; Zhang, P.; Li, Y. G.; Regier, T.; Dai, H. J. Fe–N bonding in a carbon nanotube-graphene complex for oxygen reduction: An XAS study. Phys. Chem. Chem. Phys. 2014, 16, 15787–15791.

    Article  Google Scholar 

  36. Miedema, P. S.; van Schooneveld, M. M.; Bogerd, R.; Rocha, T. C. R.; Hävecker, M.; Knop-Gericke, A.; de Groot, F. M. F. Oxygen binding to cobalt and iron phthalocyanines as determined from in situ X-ray absorption spectroscopy. J. Phys. Chem. C 2011, 115, 25422–25428.

    Article  Google Scholar 

  37. Jia, Q. Y.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E. F.; Zelenay, P. et al. Experimental observation of redox-induced Fe–N switching behavior as a determinant role for oxygen reduction activity. ACS Nano 2015, 9, 12496–12505.

    Article  Google Scholar 

  38. Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M. T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942.

    Article  Google Scholar 

  39. Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

    Article  Google Scholar 

  40. Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 2016, 28, 5080–5086.

    Article  Google Scholar 

  41. Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H. G.; Wang, H. L.; Dai, L. M. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy 2016, 29, 83–110.

    Article  Google Scholar 

  42. Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.

    Article  Google Scholar 

  43. Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

    Article  Google Scholar 

  44. Guo, S. J.; Yang, Y. M.; Liu, N. Y.; Qiao, S.; Huang, H.; Liu, Y.; Kang, Z. H. One-step synthesis of cobalt, nitrogen-codoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions. Sci. Bull. 2016, 61, 68–77.

    Article  Google Scholar 

  45. Lefèvre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    Article  Google Scholar 

  46. Yang, J.; Sun, H. Y.; Liang, H. Y.; Ji, H. X.; Song, L.; Gao, C.; Xu, H. X. A highly efficient metal-free oxygen reduction electrocatalyst assembled from carbon nanotubes and graphene. Adv. Mater. 2016, 28, 4606–4613.

    Article  Google Scholar 

  47. Shang, L.; Yu, H. J.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Well-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater. 2016, 28, 1668–1674.

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported partly by Ministry of Science and Technology (MOST) (Nos. 2017YFA0303500 and 2014CB848900), the National Natural Science Foundation of China (NSFC) (Nos. U1532112, 11574280 and 11605201 ), CAS Interdisciplinary Innovation Team and CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018). L. S. acknowledges the recruitment program of global experts, the CAS Hundred Talent Program and Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University. We thank the Shanghai Synchrotron Radiation Facility (14W1, SSRF), the Beijing Synchrotron Radiation Facility (1W1B and soft-X-ray endstation, BSRF), the Hefei Synchrotron Radiation Facility (Photoemission, MCD and Catalysis/Surface Science Endstations, NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for helps in characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Song.

Electronic supplementary material

12274_2017_1840_MOESM1_ESM.pdf

In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Wu, C., Chen, S. et al. In situ trapped high-density single metal atoms within graphene: Iron-containing hybrids as representatives for efficient oxygen reduction. Nano Res. 11, 2217–2228 (2018). https://doi.org/10.1007/s12274-017-1840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1840-8

Keywords

Navigation