Skip to main content
Log in

Real-time decay of fluorinated fullerene molecules on Cu(001) surface controlled by initial coverage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, the evolution of C60F18 molecules on a Cu(001) surface was studied by means of scanning tunneling microscopy and density functional theory calculations. The results showed that fluorinated fullerenes (tortoise-shaped polar C60F18) decay on Cu(001) surfaces by a step-by-step detachment of F atoms from the C60 cage. The most favorable adsorption configuration was realized when the F atoms of C60F18 pointed towards the Cu surface and six F atoms were detached from it. The results also showed that a further decay of C60F12 molecules strongly depended on the initial C60F18 coverage. The detached F atoms initially formed a two-dimensional (2D) gas phase which then slowly transformed into F-induced surface structures. The degree of contact between the C60F12 molecules and the Cu(001) surface depended on the density of the 2D gas phase. Hence, the life-time of fluorinated fullerenes was determined by the density of the 2D gas phase, which was affected by the formation of new F-induced structures and the decay of C60F12 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ratner, M. A brief history of molecular electronics. Nat. Nanotechnol. 2013, 8, 378–381.

    Article  Google Scholar 

  2. Loertscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 2013, 8, 381–384.

    Article  Google Scholar 

  3. Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230–234.

    Article  Google Scholar 

  4. Liljeroth, P.; Repp, J.; Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 2007, 317, 1203–1206.

    Article  Google Scholar 

  5. Yee, S. K.; Sun, J. B.; Darancet, P.; Tilley, T. D.; Majumdar, A.; Neaton, J. B.; Segalman, R. A. Inverse rectification in donor–acceptor molecular heterojunctions. ACS Nano 2011, 5, 9256–9263.

    Article  Google Scholar 

  6. Haddon, R. C.; Perel, A. S.; Morris, R. C.; Palstra, T. T. M.; Hebard, A. F.; Fleming, R. M. C60 thin film transistors. Appl. Phys. Lett. 1995, 67, 121–123.

    Article  Google Scholar 

  7. Kobozono, Y.; Nagano, T.; Haruyama, Y.; Kuwahara, E.; Takayanagi, T.; Ochi, K.; Fujiwara, A. Fabrication of C60 field-effect transistors with polyimide and Ba0.4Sr0.6Ti0.96O3 gate insulators. Appl. Phys. Lett. 2005, 87, 143506.

    Article  Google Scholar 

  8. Pahner, P.; Kleemann, H.; Burtone, L.; Tietze, M. L.; Fischer, J.; Leo, K.; Lüssem, B. Pentacene Schottky diodes studied by impedance spectroscopy: Doping properties and trap response. Phys. Rev. B 2013, 88, 195205.

    Article  Google Scholar 

  9. Günther, A. A.; Sawatzki, M.; Formánek, P.; Kasemann, D.; Leo, K. Contact doping for vertical organic field-effect transistors. Adv. Funct. Mater. 2016, 26, 768–775.

    Article  Google Scholar 

  10. Tang, M. L.; Bao, Z. A. Halogenated materials as organic semiconductors. Chem. Mater. 2011, 23, 446–455.

    Article  Google Scholar 

  11. Taylor, R. Fluorinated fullerenes. Chem.—Eur. J. 2001, 7, 4074–4083.

    Article  Google Scholar 

  12. Selig, H.; Lifshitz, C.; Peres, T.; Fischer, J. E.; McGhie, A. R.; Romanow, W. J.; McCauley Jr, J. P.; Smith III, A. B. Fluorinated fullerenes. J. Am. Chem. Soc. 1991, 113, 5475–5476.

    Article  Google Scholar 

  13. Tuinman, A. A.; Mukherjee, P.; Adcock, J. L.; Hettich, R. L.; Compton, R. N. Characterization and stability of highly fluorinated fullerenes. J. Phys. Chem. 1992, 96, 7584–7589.

    Article  Google Scholar 

  14. Boltalina, O. V.; Abdul-Sada, A. K.; Taylor, R. Hyperfluorination of [60] fullerene by krypton difluoride. J. Chem. Soc., Perkin Trans. 2 1995, 981–985.

    Article  Google Scholar 

  15. Boltalina, O. V.; Markov, V. Y.; Taylor, R.; Waugh, M. P. Preparation and characterisation of C60F18. Chem. Commun. 1996, 2549–2550.

  16. Neretin, I. S.; Lyssenko, K. A.; Antipin, M. Y.; Slovokhotov, Y. L.; Boltalina, O. V.; Troshin, P. A.; Lukonin, A. Y.; Sidorov, L. N.; Taylor, R. C60F18, a flattened fullerene: Alias a hexa-substituted benzene. Angew. Chem., Int. Ed. 2000, 39, 3273–3276.

    Article  Google Scholar 

  17. Tuinman, A. A.; Gakh, A. A.; Adcock, J. L.; Compton, R. N. Hyperfluorination of buckminsterfullerene: Cracking the sphere. J. Amer. Chem. Soc. 1993, 115, 5885–5886.

    Article  Google Scholar 

  18. Boltalina, O. V.; Lukonin, A. Y.; Pavlovich, V. K.; Sidorov, L. N.; Taylor, R.; Abdul-Sada, A. K. Reaction of [60]fullerene with terbium(IV) fluoride. Fuller. Sci. Technol. 1998, 6, 469–479.

    Article  Google Scholar 

  19. Edmonds, M. T.; Wanke, M.; Tadich, A.; Vulling, H. M.; Rietwyk, K. J.; Sharp, P. L.; Stark, C. B.; Smets, Y.; Schenk, A.; Wu, Q.-H. et al. Surface transfer doping of hydrogenterminated diamond by C60F48: Energy level scheme and doping efficiency. J. Chem. Phys. 2012, 136, 124701.

    Article  Google Scholar 

  20. Sque, S. J.; Jones, R.; Goss, J. P.; Briddon, P. R.; Oberg, S. First-principles study of C60 and C60F36 as transfer dopants for p-type diamond. J. Phys.: Condens. Matter 2005, 17, L21–L26.

    Google Scholar 

  21. Ouyang, T.; Loh, K. P.; Qi, D. C.; Wee, A. T. S.; Nesladek, M. Chemical bonding of fullerene and fluorinated fullerene on bare and hydrogenated diamond. Chem. Phys. Chem. 2008, 9, 1286–1293.

    Article  Google Scholar 

  22. Tadich, A.; Edmonds, M. T.; Ley, L.; Fromm, F.; Smets, Y.; Mazej, Z.; Riley, J.; Pakes, C. I.; Seyller, T.; Wanke, M. Tuning the charge carriers in epitaxial graphene on SiC(0001) from electron to hole via molecular doping with C60F48. Appl. Phys. Lett. 2013, 102, 241601.

    Article  Google Scholar 

  23. Tada, T.; Uchida, N.; Kanayama, T.; Hiura, H.; Kimoto, K. Charge-transfer doping by fullerenes on oxidized Si surfaces. J. App. Phys. 2007, 102, 074504.

    Article  Google Scholar 

  24. Oreshkin, A. I.; Bakhtizin, R. Z.; Murugan, P.; Kumar, V.; Fukui, N.; Hashizume, T.; Sakurai, T. Initial stage of the adsorption of fluorofullerene molecules on Si surface. JETP Lett. 2010, 92, 449–452.

    Article  Google Scholar 

  25. Bakhtizin, R. Z.; Oreshkin, A. I.; Murugan, P.; Kumar, V.; Sadowski, J. T.; Fujikawa, Y.; Kawazoe, Y.; Sakurai, T. Adsorption and electronic structure of single C60F18 molecule on Si(111)-7×7 surface. Chem. Phys. Lett. 2009, 482, 307–311.

    Article  Google Scholar 

  26. Oreshkin, A. I.; Bakhtizin, R. Z.; Mantsevich, V. N.; Oreshkin, S. I.; Savinov, S. V.; Panov, V. I. STM/STS study of C60F36 molecules adsorption on 7×7-Si(111) surface. JETP Lett. 2012, 95, 666–669.

    Article  Google Scholar 

  27. Fujikawa, Y.; Sadowski, J. T.; Kelly, K. F.; Nakayama, K. S.; Nagao, T.; Sakurai, T. Fluorine etching on the Si(111)-7×7 surfaces using fluorinated fullerene. Surf. Sci. 2002, 521, 43–48.

    Article  Google Scholar 

  28. Shimizu, T. K.; Jung, J.; Otani, T.; Han, Y.-K.; Kawai, M.; Kim, Y. Two-dimensional superstructure formation of fluorinated fullerene on Au(111): A scanning tunneling microscopy study. ASC Nano 2012, 6, 2679–2685.

    Article  Google Scholar 

  29. Sun, Y. M.; Liu, Y. Q.; Zhu, D. B. Advances in organic field-effect transistors. J. Mater. Chem. 2005, 15, 53–65.

    Article  Google Scholar 

  30. Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M. et al. STM study of C60F18 high dipole moment molecules on Au(111). Surf. Sci. 2015, 641, 248–251.

    Article  Google Scholar 

  31. Lebedev, A. M.; Sukhanov, L. P.; Brzhezinskaya, M. M.; Men’shikov, K. A.; Svechnikov, N. Y.; Chumakov, R. G.; Stankevich, V. G. Experimentally observed orientation of C60F18 molecules on the nickel single crystal (100) surface. J. Surf. Investig.-X-Ray Synch. Neutron Tech. 2012, 6, 833–839.

    Article  Google Scholar 

  32. Horcas, I.; Fernández, R.; Gómez-Rodríguez, J.; Colchero, J.; Gómez-Herrero, J.; Baro, A. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.

    Article  Google Scholar 

  33. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  34. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  Google Scholar 

  35. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  Google Scholar 

  36. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  37. Abel, M.; Dmitriev, A.; Fasel, R.; Lin, N.; Barth, J. V.; Kern, K. Scanning tunneling microscopy and X-ray photoelectron diffraction investigation of C60 films on Cu(100). Phys. Rev. B 2003, 67, 245407.

    Article  Google Scholar 

  38. Migani, A.; Illas, F. A systematic study of the structure and bonding of halogens on low-index transition metal surfaces. J. Phys. Chem. B 2006, 110, 11894–11906.

    Article  Google Scholar 

  39. Tersoff, J.; Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983, 50, 1998–2001.

    Article  Google Scholar 

  40. Tersoff, J.; Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 1985, 31, 805–813.

    Article  Google Scholar 

  41. Kokalj, A. Electrostatic model for treating long-range lateral interactions between polar molecules adsorbed on metal surfaces. Phys. Rev. B 2011, 84, 045418.

    Article  Google Scholar 

  42. Li, W.-X.; Stampfl, C.; Scheffler, M. Oxygen adsorption on Ag(111): A density-functional theory investigation. Phys. Rev. B 2002, 65, 075407.

    Article  Google Scholar 

  43. Stroscio, J. A.; Celotta, R. J. Controlling the dynamics of a single atom in lateral atom manipulation. Science 2004, 306, 242–247.

    Article  Google Scholar 

  44. Berner, S.; Brunner, M.; Ramoino, L.; Suzuki, H.; Güntherodt, H. J.; Jung, T. A. Time evolution analysis of a 2D solid-gas equilibrium: A model system for molecular adsorption and diffusion. Chem. Phys. Lett. 2001, 348, 175–181.

    Article  Google Scholar 

  45. Berner, S.; de Wild, M.; Ramoino, L.; Ivan, S.; Baratoff, A.; Güntherodt, H.-J.; Suzuki, H.; Schlettwein, D.; Jung, T. A. Adsorption and two-dimensional phases of a large polar molecule: Sub-phthalocyanine on Ag(111). Phys. Rev. B 2003, 68, 115410.

    Article  Google Scholar 

  46. Wu, K. H.; Fujikawa, Y.; Nagao, T.; Hasegawa, Y.; Nakayama, K. S.; Xue, Q. K.; Wang, E. G.; Briere, T.; Kumar, V.; Kawazoe, Y. et al. Na Adsorption on the Si(111)-(7×7) surface: From two-dimensional gas to nanocluster array. Phys. Rev. Lett. 2003, 91, 126101.

    Article  Google Scholar 

  47. Wu, K. H.; Fujikawa, Y.; Briere, T.; Kumar, V.; Kawazoe, Y.; Sakurai, T. Dynamics and nano-clustering of alkali metals (Na, K) on the Si(111)-(7×7) surface. Ultramicroscopy 2005, 105, 32–41.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. L. N. Sidorov for providing us with C60F18 fullerenes. The research has been supported by the Russian Foundation for Basic Research (RFBR) grants (Nos. 16-02-00818-a and 14-02-97022R-Povolzhye-a) and by the computing facilities of the Lomonosov Moscow State University, Research Computing Center. DFT calculations were performed at CSIR-CECRI and SNU facilities. V. K. thanks the Shiv Nadar University High performance computer center Magus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey I. Oreshkin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oreshkin, A.I., Muzychenko, D.A., Oreshkin, S.I. et al. Real-time decay of fluorinated fullerene molecules on Cu(001) surface controlled by initial coverage. Nano Res. 11, 2069–2082 (2018). https://doi.org/10.1007/s12274-017-1823-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1823-9

Keywords

Navigation