Skip to main content
Log in

Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High performance methanol oxidation reaction (MOR) catalysts are critical to the performance of attractive, direct methanol fuel cells. Here, we use surface controlled PtNi alloy nanoparticles as model catalysts to study the MOR mechanism and give further guidance to the design of new high performance MOR catalysts. The enhanced MOR activity of PtNi alloy was mainly attributed to the enhanced OH adsorption owing to surface Ni sites. This suggests that the MOR undergoes the Langmuir–Hinshelwood mechanism, whereby adsorbed CO is removed with the assistance of adsorbed OH. Within the PtNi catalyst, Pt provides methanol adsorption sites (in which methanol is converted to adsorbed CO) and Ni provides OH adsorption sites. The optimized Pt–Ni ratio for MOR was found to be 1:1. This suggests that bifunctional catalysts with both CO and OH adsorption sites can lead to highly active MOR catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gasteiger, H. A.; Markovic, N.; Ross Jr, P. N.; Cairns, E. J. Methanol electrooxidation on well-characterized platinumruthenium bulk alloys. J. Phys. Chem. 1993, 97, 12020–12029.

    Article  Google Scholar 

  2. Aricò, A. S.; Srinivasan, S.; Antonucci, V. DMFCs: From fundamental aspects to technology development. Fuel Cells 2001, 1, 133–161.

    Article  Google Scholar 

  3. Zhao, X.; Yin, M.; Ma, L.; Liang, L.; Liu, C. P.; Liao, J. H.; Lu, T. H.; Xing, W. Recent advances in catalysts for direct methanol fuel cells. Energy Environ. Sci. 2011, 4, 2736–2753.

    Article  Google Scholar 

  4. Kang, Y. Q.; Li, F. M.; Li, S. N.; Ji, P. J.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016, 9, 3893–3902.

    Article  Google Scholar 

  5. Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Anode catalysts for direct methanol fuel cells in acidic media: Do we have any alternative for Pt or Pt–Ru? Chem. Rev. 2014, 114, 12397–12429.

    Google Scholar 

  6. Cai, B.; Wen, D.; Liu, W.; Herrmann, A. K.; Benad, A.; Eychmuller, A. Function-led design of aerogels: Self-assembly of alloyed PdNi hollow nanospheres for efficient electrocatalysis. Angew. Chem., Int. Ed. 2015, 54, 13101–13105.

    Article  Google Scholar 

  7. Zheng, J. N.; Li, S. S.; Ma, X. H.; Chen, F. Y.; Wang, A. J.; Chen, J. R.; Feng, J. J. Popcorn-like PtAu nanoparticles supported on reduced graphene oxide: Facile synthesis and catalytic applications. J. Mater. Chem. A 2014, 2, 8386–8395.

    Article  Google Scholar 

  8. Yuwen, L. H.; Xu, F.; Xue, B.; Luo, Z. M.; Zhang, Q.; Bao, B. Q.; Su, S.; Weng, L. X.; Huang, W.; Wang, L. H. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd–MoS2 for methanol oxidation. Nanoscale 2014, 6, 5762–5769.

    Article  Google Scholar 

  9. Zhao, W. Y.; Huang, D. B.; Yuan, Q.; Wang, X. Sub-2.0-nm Ru and composition-tunable RuPt nanowire networks. Nano Res. 2016, 9, 3066–3074.

    Article  Google Scholar 

  10. Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.

    Article  Google Scholar 

  11. Huang, H. J.; Chen, H. Q.; Sun, D. P.; Wang, X. Graphene nanoplate-Pt composite as a high performance electrocatalyst for direct methanol fuel cells. J. Power Sources 2012, 204, 46–52.

    Article  Google Scholar 

  12. Gu, Y. J.; Wong, W. T. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Langmuir 2006, 22, 11447–11452.

    Article  Google Scholar 

  13. Lin, Y. H.; Cui, X. L.; Yen, C. H.; Wai, C. M. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: A novel electrocatalyst for direct methanol fuel cells. Langmuir 2005, 21, 11474–11479.

    Article  Google Scholar 

  14. Fu, G. T.; Zhang, Q.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Res. 2015, 8, 3963–3971.

    Article  Google Scholar 

  15. Couto, A.; Rincón, A.; Pérez, M. C.; Gutiérrez, C. Adsorption and electrooxidation of carbon monoxide on polycrystalline platinum at pH 0.3–13. Electrochim. Acta 2001, 46, 1285–1296.

    Article  Google Scholar 

  16. Farias, M. J. S.; Vidal-Iglesias, F. J.; Solla-Gullón, J.; Herrero, E.; Feliu, J. M. On the behavior of CO oxidation on shape-controlled Pt nanoparticles in alkaline medium. J. Electroanal. Chem. 2014, 716, 16–22.

    Article  Google Scholar 

  17. Reddington, E.; Sapienza, A.; Gurau, B.; Viswanathan, R.; Sarangapani, S.; Smotkin, E. S.; Mallouk, T. E. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science 1998, 280, 1735–1737.

    Article  Google Scholar 

  18. Liu, H. S.; Song, C. J.; Zhang, L.; Zhang, J. J.; Wang, H. J.; Wilkinson, D. P. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 2006, 155, 95–110.

    Article  Google Scholar 

  19. Spendelow, J. S.; Lu, G. Q.; Kenis, P. J. A.; Wieckowski, A. Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. J. Electroanal. Chem. 2004, 568, 215–224.

    Article  Google Scholar 

  20. Chen, C. S.; Pan, F. M.; Yu, H. J. Electrocatalytic activity of Pt nanoparticles on a karst-like Ni thin film toward methanol oxidation in alkaline solutions. Appl. Catal., B-Environ. 2011, 104, 382–389.

    Article  Google Scholar 

  21. Watanabe, M.; Motoo, S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 1975, 60, 275–283.

    Article  Google Scholar 

  22. Chetty, R.; Kundu, S.; Xia, W.; Bron, M.; Schuhmann, W.; Chirila, V.; Brandl, W.; Reinecke, T.; Muhler, M. PtRu nanoparticles supported on nitrogen-doped multiwalled carbon nanotubes as catalyst for methanol electrooxidation. Electrochim. Acta 2009, 54, 4208–4215.

    Article  Google Scholar 

  23. Li, L.; Xing, Y. C. Pt–Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J. Phys. Chem. C 2007, 111, 2803–2808.

    Article  Google Scholar 

  24. Yang, H.; Coutanceau, C.; Léger, J. M.; Alonso-Vante, N.; Lamy, C. Methanol tolerant oxygen reduction on carbonsupported Pt–Ni alloy nanoparticles. J. Electroanal. Chem. 2005, 576, 305–313.

    Article  Google Scholar 

  25. Jiang, Q.; Jiang, L. H.; Wang, S. L.; Qi, J.; Sun, G. Q. A highly active PtNi/C electrocatalyst for methanol electro-oxidation in alkaline media. Catal. Commun. 2010, 12, 67–70.

    Article  Google Scholar 

  26. Niu, Z. Q.; Wang, D. S.; Yu, R.; Peng, Q.; Li, Y. D. Highly branched Pt–Ni nanocrystals enclosed by stepped surface for methanol oxidation. Chem. Sci. 2012, 3, 1925–1929.

    Article  Google Scholar 

  27. Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. A simple one-step preparation of high utilization AuPt nanoparticles supported on MWCNTs for methanol oxidation in alkaline medium. Electrochem. Commun. 2008, 10, 1748–1751.

    Article  Google Scholar 

  28. Ren, F. F.; Wang, C. Q.; Zhai, C. Y.; Jiang, F. X.; Yue, R. R.; Du, Y.; Yang, P.; Xu, J. One-pot synthesis of a rGO-supported ultrafine ternary PtAuRu catalyst with high electrocatalytic activity towards methanol oxidation in alkaline medium. J. Mater. Chem. A 2013, 1, 7255–7261.

    Article  Google Scholar 

  29. Guo, D. J.; Jing, Z. H. A novel co-precipitation method for preparation of Pt–CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells. J. Power Sources 2010, 195, 3802–3805.

    Article  Google Scholar 

  30. Scibioh, M. A.; Kim, S. K.; Cho, E. A.; Lim, T. H.; Hong, S. A.; Ha, H. Y. Pt–CeO2/C anode catalyst for direct methanol fuel cells. Appl. Catal., B-Environ. 2008, 84, 773–782.

    Article  Google Scholar 

  31. Lee, K. S.; Park, I. S.; Cho, Y. H.; Jung, D. S.; Jung, N.; Park, H. Y.; Sung, Y. E. Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. J. Catal. 2008, 258, 143–152.

    Article  Google Scholar 

  32. Cao, L.; Scheiba, F.; Roth, C.; Schweiger, F.; Cremers, C.; Stimming, U.; Fuess, H.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. Novel nanocomposite Pt/RuO2.xH2O/carbon nanotube catalysts for direct methanol fuel cells. Angew. Chem., Int. Ed. 2006, 45, 5315–5319.

    Article  Google Scholar 

  33. Saida, T.; Sugimoto, W.; Takasu, Y. Enhanced activity and stability of Pt/C fuel cell anodes by the modification with ruthenium-oxide nanosheets. Electrochim. Acta 2010, 55, 857–864.

    Article  Google Scholar 

  34. Pietron, J. J.; Pomfret, M. B.; Chervin, C. N.; Long, J. W.; Rolison, D. R. Direct methanol oxidation at low overpotentials using Pt nanoparticles electrodeposited at ultrathin conductive RuO2 nanoskins. J. Mater. Chem. 2012, 22, 5197–5204.

    Article  Google Scholar 

  35. Li, W.; Bai, Y.; Li, F. J.; Liu, C.; Chan, K. Y.; Feng, X.; Lu, X. H. Core-shell TiO2/C nanofibers as supports for electrocatalytic and synergistic photoelectrocatalytic oxidation of methanol. J. Mater. Chem. 2012, 22, 4025–4031.

    Article  Google Scholar 

  36. Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 2015, 6, 10035.

    Article  Google Scholar 

  37. Lu, S. Q.; Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 2017, 139, 5156–5163.

    Article  Google Scholar 

  38. Liu, Z. F.; Shamsuzzoha, M.; Ada, E. T.; Reichert, W. M.; Nikles, D. E. Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J. Power Sources 2007, 164, 472–480.

    Article  Google Scholar 

  39. Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Görlitz, D.; Weller, H. Colloidal synthesis of NixPt1-x nanoparticles with tuneable composition and size. Small 2007, 3, 271–274.

    Article  Google Scholar 

  40. Wang, C.; Chi, M. F.; Wang, G. F.; van der Vliet, D.; Li, D. G.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv. Funct. Mater. 2011, 21, 147–152.

    Article  Google Scholar 

  41. Wang, C.; Chi, M. F.; Li, D. G.; Strmcnik, D.; van der Vliet, D.; Wang, G. F.; Komanicky, V.; Chang, K. C.; Paulikas, A. P.; Tripkovic, D. et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396–14403.

    Article  Google Scholar 

  42. Kim, H. J.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Kim, W. B. Carbon-supported PtNi catalysts for electrooxidation of cyclohexane to benzene over polymer electrolyte fuel cells. Catal. Today 2009, 146, 9–14.

    Article  Google Scholar 

  43. Radmilovic, V.; Gasteiger, H. A.; Ross, P. N. Structure and chemical composition of a supported Pt–Ru electrocatalyst for methanol oxidation. J. Catal. 1995, 154, 98–106.

    Article  Google Scholar 

  44. Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

    Article  Google Scholar 

  45. Diao, W. J.; Tengco, J. M. M.; Regalbuto, J. R.; Monnier, J. R. Preparation and characterization of Pt–Ru bimetallic catalysts synthesized by electroless deposition methods. ACS Catal. 2015, 5, 5123–5134.

    Article  Google Scholar 

  46. Scofield, M. E.; Zhou, Y. C.; Yue, S. Y.; Wang, L.; Su, D.; Tong, X.; Vukmirovic, M. B.; Adzic, R. R.; Wong, S. S. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions. ACS Catal. 2016, 6, 3895–3908.

    Article  Google Scholar 

  47. He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

    Article  Google Scholar 

  48. Sheng, W. C.; Gasteiger, H. A.; Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs. alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0206500), the National Natural Science Foundation of China (No. 21671014), State Key Laboratory of Organic–Inorganic Composites, Beijing University of Chemical Technology (No. oic-201503003) and the Fundamental Research Funds for the Central Universities (No. buctrc201522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbin Zhuang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Li, H., Sun, J. et al. Promoting the methanol oxidation catalytic activity by introducing surface nickel on platinum nanoparticles. Nano Res. 11, 2058–2068 (2018). https://doi.org/10.1007/s12274-017-1822-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1822-x

Keywords

Navigation