Skip to main content
Log in

Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A highly active and stable oxygen evolution reaction (OER) electrocatalyst is critical for hydrogen production from water splitting. Herein, three-dimensional Ni3S2@graphene@Co92S8 (Ni3S2@G@Co9S8), a sandwich-structured OER electrocatalyst, was grown in situ on nickel foam; it afforded an enhanced catalytic performance when highly conductive graphene is introduced as an intermediary for enhancing the electron transfer rate and stability. Serving as a free-standing electrocatalytic electrode, Ni3S2@G@Co9S8 presents excellent electrocatalytic activities for OER: A low onset overpotential (2 mA·cm−2 at 174 mV), large anode current density (10 mA·cm−2 at an overpotential of 210 mV), low Tafel slope (66 mV·dec−1), and predominant durability of over 96 h (releasing a current density of ∼14 mA·cm−2 with a low and constant overpotential of 215 mV) in a 1 M KOH solution. This work provides a promising, cost-efficient electrocatalyst and sheds new light on improving the electrochemical performance of composites through enhancing the electron transfer rate and stability by introducing graphene as an intermediary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

    Article  Google Scholar 

  2. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  Google Scholar 

  3. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H. J.; Baek, J. B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    Article  Google Scholar 

  4. Zheng, M. B.; Zhang, S. T.; Chen, S. Q.; Lin, Z. X.; Pang, H.; Yu, Y. Activated graphene with tailored pore structure parameters for long cycle-life lithium-sulfur batteries. Nano Res. 2017, DOI: 10.1007/s12274-017-1659-3.

    Google Scholar 

  5. Zhang, G. X.; Xiao, X.; Li, B.; Gu, P.; Xue, H. G.; Pang, H. Transition metal oxides with one-dimensional/onedimensional- analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 2017, 5, 8155–8186.

    Article  Google Scholar 

  6. Zheng, S. S.; Li, X. R.; Yan, B. Y.; Hu, Q.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv. Energy Mater. 2017, DOI: 10.1002/aenm.201602733.

    Google Scholar 

  7. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735.

    Article  Google Scholar 

  8. Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.

    Article  Google Scholar 

  9. Service, R. F. Hydrogen cars: Fad or the future? Science 2009, 324, 1257–1259.

    Article  Google Scholar 

  10. Turner, J. A. A realizable renewable energy future. Science 1999, 285, 687–689.

    Article  Google Scholar 

  11. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  12. Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

    Article  Google Scholar 

  13. Fournier, J.; Wrona, P. K.; Lasia, A.; Lacasse, R.; Lalancette, J. M.; Menard, H.; Brossard, L. Catalytic influence of commercial Ru, Rh, Pt, and Pd (0.1 atomic percent) intercalated in graphite on the hydrogen evolution reaction. ChemInform 1992, 23, DOI: 10.1002/chin.199246015.

    Google Scholar 

  14. Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.

    Article  Google Scholar 

  15. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  Google Scholar 

  16. Zhang, H. C.; Li, Y. J.; Xu, T. H.; Wang, J. B.; Huo, Z. Y.; Wan, P. B.; Sun, X. M. Amorphous Co-doped MoS2 nanosheet coated metallic CoS2 nanocubes as an excellent electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 15020–15023.

    Article  Google Scholar 

  17. Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.

    Article  Google Scholar 

  18. Liu, T. T.; Liu, Q.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 2015, 51, 16683–16686.

    Article  Google Scholar 

  19. Wang, S.; Wang, J.; Zhu, M. L.; Bao, X. B.; Xiao, B. Y.; Su, D. F.; Li, H. R.; Wang, Y. Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: A highly efficient, low-cost catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 15753–15759.

    Article  Google Scholar 

  20. Rowley-Neale, S. J.; Brownson, D. A. C.; Smith, G. C.; Sawtell, D. A. G.; Kelly, P. J.; Banks, C. E. 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction. Nanoscale 2015, 7, 18152–18168.

    Article  Google Scholar 

  21. Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 2017, 10, 1010–1020.

    Article  Google Scholar 

  22. Li, B. B.; Liang, Y. Q.; Yang, X. J.; Cui, Z. D.; Qiao, S. Z.; Zhu, S. L.; Li, Z. Y.; Yin, K. MoO2-CoO coupled with a macroporous carbon hybrid electrocatalyst for highly efficient oxygen evolution. Nanoscale 2015, 7, 16704–16714.

    Article  Google Scholar 

  23. Plaisance, C. P.; van Santen, R. A. Structure sensitivity of the oxygen evolution reaction catalyzed by cobalt(II, III) oxide. J. Am. Chem. Soc. 2015, 137, 14660–14672.

    Article  Google Scholar 

  24. Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.

    Article  Google Scholar 

  25. Chen, P. Z.; Xu, K.; Fang, Z. W.; Tong, Y.; Wu, J. C.; Lu, X. L.; Peng, X.; Ding, H.; Wu, C. Z.; Xie, Y. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 14710–14714.

    Article  Google Scholar 

  26. Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 129, 5961–5965.

    Article  Google Scholar 

  27. Xu, L.; Jiang, Q. Q.; Xiao, Z. H.; Li, X. Y.; Huo, J.; Wang, S. Y.; Dai, L. M. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2016, 55, 5277–5281.

    Article  Google Scholar 

  28. Xie, C.; Wang, Y. Y.; Hu, K.; Tao, L.; Huang, X. B.; Huo, J.; Wang, S. Y. In situ confined synthesis of molybdenum oxide decorated nickel-iron alloy nanosheets from MoO4 2-intercalated layered double hydroxides for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 87–91.

    Article  Google Scholar 

  29. Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Zhao, J.; Liu, C.; Xie, J.; Cui, Y. A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Res. 2017, 10, 1213–1222.

  30. Zhu, J. Q.; Ren, Z. Y.; Du, S. C.; Xie, Y.; Wu, J.; Meng, H. Y.; Xue, Y. Z.; Fu, H. G. Co-vacancy-rich Co1–xS nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Res. 2017, 10, 1819–1831.

    Article  Google Scholar 

  31. Lu, Q.; Hutchings, G. S.; Yu, W. T.; Zhou, Y.; Forest, R. V.; Tao, R. Z.; Rosen, J.; Yonemoto, B. T.; Cao, Z. Y.; Zheng, H. M. et al. Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2015, 6, 6567.

    Article  Google Scholar 

  32. Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

    Article  Google Scholar 

  33. Huang, J. L.; Hou, D. M.; Zhou, Y. C.; Zhou, W. J.; Li, G. Q.; Tang, Z. H.; Li, L. G.; Chen, S. W. MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 22886–22891.

    Article  Google Scholar 

  34. Xie, L. S.; Zhang, R.; Cui, L.; Liu, D. N.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance electrolytic oxygen evolution in neutral media catalyzed by a cobalt phosphate nanoarray. Angew. Chem., Int. Ed. 2017, 56, 1064–1068.

    Article  Google Scholar 

  35. Jiang, P.; Liu, Q.; Sun, X. P. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3D hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale 2014, 6, 13440–13445.

    Article  Google Scholar 

  36. Li, S. W.; Wang, Y. C.; Peng, S. J.; Zhang, L. J.; Al-Enizi, A. M.; Zhang, H.; Sun, X. H.; Zheng, G. F. Co-Ni-based nanotubes/nanosheets as efficient water splitting electrocatalysts. Adv. Energy Mater. 2016, 6, 1501661.

    Article  Google Scholar 

  37. Zhang, Y. Q.; Ouyang, B.; Xu, J.; Chen, S.; Rawat, R. S.; Fan, H. J. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater. 2016, 6, 1600221.

    Article  Google Scholar 

  38. Xu, R.; Wu, R.; Shi, Y. M.; Zhang, J. F.; Zhang, B. Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and selfsupported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy 2016, 24, 103–110.

    Article  Google Scholar 

  39. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    Article  Google Scholar 

  40. Dong, Q. C.; Sun, C. C.; Dai, Z. Y.; Zang, X. X.; Dong, X. C. Free-standing NiO@C nanobelt as an efficient catalyst for water splitting. ChemCatChem 2016, 8, 3484–3489.

    Article  Google Scholar 

  41. Dong, Q. C.; Wang, Q.; Dai, Z. Y.; Qiu, H. J.; Dong, X. C. MOF-derived Zn-doped CoSe2 as an efficient and stable free-standing catalyst for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 26902–26907.

    Article  Google Scholar 

  42. Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.

    Article  Google Scholar 

  43. Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

    Article  Google Scholar 

  44. Meng, S. J.; Wu, M. Y.; Wang, Q.; Dai, Z. Y.; Si, W. L.; Huang, W.; Dong, X. C. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose. Nanotechnology 2016, 27, 344001.

    Article  Google Scholar 

  45. Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.

    Article  Google Scholar 

  46. Feng, L. L.; Fan, M. H.; Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Chen, H.; Chen, W.; Wang, D. J.; Zou, X. X. Metallic Co9S8 nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J. Mater. Chem. A 2016, 4, 6860–6867.

    Article  Google Scholar 

  47. Dou, S.; Tao, L.; Huo, J.; Wang, S. Y.; Dai, L. M. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 61525402 and 5161101159), Key University Science Research Project of Jiangsu Province (No. 15KJA430006), QingLan Project, National Postdoctoral Program for Innovative Talents (No. BX201600072), China Postdoctoral Science Foundation (No. 2016M601792).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinjun Shao, Wei Huang or Xiaochen Dong.

Electronic supplementary material

12274_2017_1754_MOESM1_ESM.pdf

Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Zhang, Y., Dai, Z. et al. Graphene as an intermediary for enhancing the electron transfer rate: A free-standing Ni3S2@graphene@Co9S8 electrocatalytic electrode for oxygen evolution reaction. Nano Res. 11, 1389–1398 (2018). https://doi.org/10.1007/s12274-017-1754-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1754-5

Keywords

Navigation