Skip to main content
Log in

Engineering carbon quantum dots for photomediated theranostics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon quantum dots (CQDs) have emerged as potential alternatives to classical metal-based semiconductor quantum dots (QDs) due to the abundance of their precursors, their ease of synthesis, high biocompatibility, low cost, and particularly their strong photoresponsiveness, tunability, and stability. Light is a versatile, tunable stimulus that can provide spatiotemporal control. Its interaction with CQDs elicits interesting responses such as wavelength-dependent optical emissions, charge/electron transfer, and heat generation, processes that are suitable for a range of photomediated bioapplications. The carbogenic core and surface characteristics of CQDs can be tuned through versatile engineering strategies to endow specific optical and physicochemical properties, while conjugation with specific moieties can enable the design of targeted probes. Fundamental approaches to tune the responses of CQDs to photo-interactions and the design of bionanoprobes are presented, which enable biomedical applications involving diagnostics and therapeutics. These strategies represent comprehensive platforms for engineering multifunctional probes for nanomedicine, and the design of QD probes with a range of metal-free and emerging 2D materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, C. T. A.; Deckert, V.; Sergeev, A. M.; Zheltikov, A. M. Nanobiophotonics: Photons that shine their light on the life at the nanoscale. J. Biophotonics 2010, 3, 639–640.

    Article  Google Scholar 

  2. Feldmann, C. Luminescent nanomaterials. Nanoscale 2011, 3, 1947–1948.

    Article  Google Scholar 

  3. Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869–10939.

    Article  Google Scholar 

  4. Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    Article  Google Scholar 

  5. Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603.

    Article  Google Scholar 

  6. Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009, 3774–3776.

    Google Scholar 

  7. Yuan, F. L.; Li, S. H.; Fan, Z. T.; Meng, X. Y.; Fan, L. Z.; Yang, S. H. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 2016, 11, 565–586.

    Article  Google Scholar 

  8. Yu, P.; Wen, X. M.; Toh, Y. R.; Tang, J. Temperaturedependent fluorescence in carbon dots. J. Phys. Chem. C 2012, 116, 25552–25557.

  9. Wang, J. Q.; Choi, H. S.; Wáng, Y. X. J. Exponential growth of publications on carbon nanodots by Chinese authors. J.Thorac. Dis. 2015, 7, E201–E205.

    Google Scholar 

  10. Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20–30.

    Article  Google Scholar 

  11. Wang, S. J.; Cole, I. S.; Zhao, D. Y.; Li, Q. The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale 2016, 8, 7449–7458.

    Article  Google Scholar 

  12. Ye, R. Q.; Xiang, C. S.; Lin, J.; Peng, Z. W.; Huang, K. W.; Yan, Z.; Cook, N. P.; Samuel, E. L. G.; Hwang, C. C.; Ruan, G. D. et al. Coal as an abundant source of graphene quantum dots. Nat. Commun. 2013, 4, 2943.

    Google Scholar 

  13. Zhu, S. J.; Song, Y. B.; Zhao, X. H.; Shao, J. R.; Zhang, J. H.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 2015, 8, 355–381.

    Article  Google Scholar 

  14. Demichelis, F.; Schreiter, S.; Tagliaferro, A. Photoluminescence in a-C:H films. Phys. Rev. B 1995, 51, 2143–2147.

    Article  Google Scholar 

  15. Robertson, J.; Amaratunga, G. A. J. Photoluminescence behavior of hydrogenated amorphous carbon. J. Appl. Phys. 1996, 80, 2998–3003.

    Article  Google Scholar 

  16. Dong, Y. Q.; Cai, J. H.; You, X.; Chi, Y. W. Sensing applications of luminescent carbon based dots. Analyst 2015, 140, 7468–7486.

    Article  Google Scholar 

  17. Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S. Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: Origin of blue and green luminescence. Adv. Mater. 2013, 25, 3657–3662.

    Article  Google Scholar 

  18. Zhuo, S. J.; Shao, M. W.; Lee, S. T. Upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis. ACS Nano 2012, 6, 1059–1064.

    Article  Google Scholar 

  19. Kwon, W.; Lim, J.; Lee, J.; Park, T.; Rhee, S. W. Sulfurincorporated carbon quantum dots with a strong longwavelength absorption band. J. Mater. Chem. C 2013, 1, 2002–2008.

    Article  Google Scholar 

  20. Wang, W.; Li, Y. M.; Cheng, L.; Cao, Z. Q.; Liu, W. G. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B 2014, 2, 46–48.

    Article  Google Scholar 

  21. Shan, X. Y.; Chai, L. J.; Ma, J. J.; Qian, Z. S.; Chen, J. R.; Feng, H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014, 139, 2322–2325.

    Article  Google Scholar 

  22. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

    Article  Google Scholar 

  23. Hu, S. L.; Tian, R. X.; Dong, Y. G.; Yang, J. L.; Liu, J.; Chang, Q. Modulation and effects of surface groups on photoluminescence and photocatalytic activity of carbon dots. Nanoscale 2013, 5, 11665–11671.

    Article  Google Scholar 

  24. Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

    Article  Google Scholar 

  25. Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 2010, 22, 505–509.

    Article  Google Scholar 

  26. Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Watersoluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.

    Article  Google Scholar 

  27. Zhang, J. M.; Abbasi, F.; Claverie, J. An efficient templating approach for the synthesis of redispersible size-controllable carbon quantum dots from graphitic polymeric micelles. Chem.—Eur. J. 2015, 21, 15142–15147.

    Article  Google Scholar 

  28. Sun, Y. P.; Wang, X.; Lu, F. S.; Cao, L.; Meziani, M. J.; Luo, P. G.; Gu, L. R.; Veca, L. M. Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C 2008, 112, 18295–18298.

    Article  Google Scholar 

  29. Liu, R. H.; Huang, H.; Li, H. T.; Liu, Y.; Zhong, J.; Li, Y. Y.; Zhang, S.; Kang, Z. H. Metal nanoparticle/carbon quantum dot composite as a photocatalyst for highefficiency cyclohexane oxidation. ACS Catal. 2014, 4, 328–336.

    Article  Google Scholar 

  30. Liu, J. H.; Yang, S. T.; Chen, X. X.; Wang, H. F. Fluorescent carbon dots and nanodiamonds for biological imaging: Preparation, application, pharmacokinetics and toxicity. Curr. Drug Metab. 2012, 13, 1046–1056.

    Article  Google Scholar 

  31. Wang, H.; Zhou, S. Q. Magnetic and fluorescent carbonbased nanohybrids for multi-modal imaging and magnetic field/NIR light responsive drug carriers. Biomater. Sci. 2016, 4, 1062–1073.

    Article  Google Scholar 

  32. Sun, Y. P.; Wang, P.; Lu, Z. M.; Yang, F.; Meziani, M. J.; LeCroy, G. E.; Liu, Y.; Qian, H. J. Host-guest carbon dots for enhanced optical properties and beyond. Sci. Rep. 2015, 5, 12354.

    Article  Google Scholar 

  33. Loukanov, A.; Sekiya, R.; Yoshikawa, M.; Kobayashi, N.; Moriyasu, Y.; Nakabayashi, S. Photosensitizer-conjugated ultrasmall carbon nanodots as multifunctional fluorescent probes for bioimaging. J. Phys. Chem. C 2016, 120, 15867–15874.

    Article  Google Scholar 

  34. Dimos, K. Carbon quantum dots: Surface passivation and functionalization. Curr. Org. Chem. 2016, 20, 682–695.

    Article  Google Scholar 

  35. Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem. 2010, 122, 5438–5442.

    Article  Google Scholar 

  36. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  Google Scholar 

  37. Dong, Y. Q.; Wang, R. X.; Li, G. L.; Chen, C. Q.; Chi, Y. W.; Chen, G. N. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal. Chem. 2012, 84, 6220–6224.

    Article  Google Scholar 

  38. Liu, C.; Bao, L.; Tang, B.; Zhao, J. Y.; Zhang, Z. L.; Xiong, L. H.; Hu, J.; Wu, L. L.; Pang, D. W. Fluorescenceconverging carbon nanodots-hybridized silica nanosphere. Small 2016, 12, 4702–4706.

    Article  Google Scholar 

  39. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  40. Zhang, J.; Yu, S. H. Carbon dots: Large-scale synthesis, sensing and bioimaging. Mater. Today 2016, 19, 382–393.

    Article  Google Scholar 

  41. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636.

    Article  Google Scholar 

  42. Pu, S. C.; Yang, M. J.; Hsu, C. C.; Lai, C. W.; Hsieh, C. C.; Lin, S. H.; Cheng, Y. M.; Chou, P. T. The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots. Small 2006, 2, 1308–1313.

    Article  Google Scholar 

  43. Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.

    Article  Google Scholar 

  44. Wen, X. M.; Yu, P.; Toh, Y. R.; Ma, X. Q.; Tang, J. On the upconversion fluorescence in carbon nanodots and graphene quantum dots. Chem. Commun. 2014, 50, 4703–4706.

    Article  Google Scholar 

  45. Liu, R. L.; Wu, D. Q.; Liu, S. H.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem. 2009, 121, 4668–4671.

    Article  Google Scholar 

  46. Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Observation of pH-, solvent-, spin-, and excitationdependent blue photoluminescence from carbon nanoparticles. Chem. Commun. 2010, 46, 3681–3683.

    Article  Google Scholar 

  47. Yuan, F. L.; Wang, Z. B.; Li, X. H.; Li, Y. C.; Tan, Z. A.; Fan, L. Z.; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.

    Article  Google Scholar 

  48. Zhao, W.; Song, C.; Pehrsson, P. E. Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc. 2002, 124, 12418–12419.

    Article  Google Scholar 

  49. Zhu, S. J.; Zhang, J. H.; Qiao, C. Y.; Tang, S. J.; Li, Y. F.; Yuan, W. J.; Li, B.; Tian, L.; Liu, F.; Hu, R. et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858–6860.

    Article  Google Scholar 

  50. Fan, L. S.; Hu, Y. W.; Wang, X.; Zhang, L. L.; Li, F. H.; Han, D. X.; Li, Z. G.; Zhang, Q. X.; Wang, Z. X.; Niu, L. Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 2012, 101, 192–197.

    Article  Google Scholar 

  51. Khan, S.; Gupta, A.; Verma, N. C.; Nandi, C. K. Timeresolved emission reveals ensemble of emissive states as the origin of multicolor fluorescence in carbon dots. Nano Lett. 2015, 15, 8300–8305.

    Article  Google Scholar 

  52. Mao, Q. X.; Shuang, E.; Xia, J. M.; Song, R. S.; Shu, Y.; Chen, X. W.; Wang, J. H. Hydrophobic carbon nanodots with rapid cell penetrability and tunable photoluminescence behavior for in vitro and in vivo imaging. Langmuir 2016, 32, 12221–12229.

    Article  Google Scholar 

  53. Pan, D. Y.; Guo, L.; Zhang, J. C.; Xi, C.; Xue, Q.; Huang, H.; Li, J. H.; Zhang, Z. W.; Yu, W. J.; Chen, Z. W. et al. Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J. Mater. Chem. 2012, 22, 3314–3318.

    Article  Google Scholar 

  54. Mu, Y.; Wang, N.; Sun, Z. C.; Wang, J.; Li, J. Y.; Yu, J. H. Carbogenic nanodots derived from organo-templated zeolites with modulated full-color luminescence. Chem. Sci. 2016, 7, 3564–3568.

    Article  Google Scholar 

  55. Credi, A. Photochemistry of supramolecular systems and nanostructured assemblies. In memory of Professor Nick Turro (1938–2012). Chem. Soc. Rev. 2014, 43, 4003–4004.

    Google Scholar 

  56. Xu, J.; Sahu, S.; Cao, L.; Bunker, C. E.; Peng, G.; Liu, Y. M.; Fernando, K. A. S.; Wang, P.; Guliants, E. A.; Meziani, M. J. et al. Efficient fluorescence quenching in carbon dots by surface-doped metals-disruption of excited state redox processes and mechanistic implications. Langmuir 2012, 28, 16141–16147.

    Article  Google Scholar 

  57. Yu, P.; Wen, X. M.; Toh, Y. R.; Lee, Y. C.; Huang, K. Y.; Huang, S. J.; Shrestha, S.; Conibeer, G.; Tang, J. Efficient electron transfer in carbon nanodot–graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 2894–2901.

    Article  Google Scholar 

  58. Sheng, Z. H.; Song, L.; Zheng, J. X.; Hu, D. H.; He, M.; Zheng, M. B.; Gao, G. H.; Gong, P.; Zhang, P. F.; Ma, Y. F. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 2013, 34, 5236–5243.

    Article  Google Scholar 

  59. Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

    Article  Google Scholar 

  60. Chen, D. Q.; Wang, C.; Nie, X.; Li, S. M.; Li, R. M.; Guan, M. R.; Liu, Z.; Chen, C. Y.; Wang, C. R.; Shu, C. Y. et al. Photoacoustic imaging guided near-infrared photothermal therapy using highly water-dispersible single-walled carbon nanohorns as theranostic agents. Adv. Funct. Mater. 2014, 24, 6621–6628.

    Article  Google Scholar 

  61. Kim, J. W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H. M.; Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat. Nanotechnol. 2009, 4, 688–694.

    Article  Google Scholar 

  62. Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

    Article  Google Scholar 

  63. Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice.Adv. Mater. 2015, 27, 4169–4177.

    Google Scholar 

  64. Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  Google Scholar 

  65. Hou, J.; Wang, W.; Zhou, T. Y.; Wang, B.; Li, H. Y.; Ding, L. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 2016, 8, 11185–11193.

    Article  Google Scholar 

  66. Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.

    Article  Google Scholar 

  67. Song, Z. Q.; Quan, F. Y.; Xu, Y. H.; Liu, M. L.; Cui, L.; Liu, J. Q.Multifunctional N,S co-doped carbon quantum dots with pH-and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 2016, 104, 169–178.

    Article  Google Scholar 

  68. Das, A.; Snee, P. T. Synthetic developments of nontoxic quantum dots. ChemPhysChem 2016, 17, 598–617.

    Article  Google Scholar 

  69. Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B. P.; Pang, D. W. Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 2011, 23, 5801–5806.

    Article  Google Scholar 

  70. Zhao, L. X.; Di, F.; Wang, D. B.; Guo, L. H.; Yang, Y.; Wan, B.; Zhang, H. Chemiluminescence of carbon dots under strong alkaline solutions: Anovel insight into carbon dot optical properties. Nanoscale 2013, 5, 2655–2658.

    Article  Google Scholar 

  71. Yang, Y. X.; Wu, D. Q.; Han, S.; Hu, P. F.; Liu, R. L. Bottom-up fabrication of photoluminescent carbon dots with uniform morphology via a soft–hard template approach. Chem. Commun. 2013, 49, 4920–4922.

    Article  Google Scholar 

  72. Hola, K.; Bourlinos, A. B.; Kozak, O.; Berka, K.; Siskova, K. M.; Havrdova, M.; Tucek, J.; Safarova, K.; Otyepka, M.; Giannelis, E. P. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO induced red-shift emission. Carbon 2014, 70, 279–286.

    Article  Google Scholar 

  73. Wei, W. L.; Xu, C.; Wu, L.; Wang, J. S.; Ren, J. S.; Qu, X. G.Non-enzymatic-browning-reaction: A versatile route for production of nitrogen-doped carbon dots with tunable multicolor luminescent display. Sci. Rep. 2014, 4, 3564.

    Article  Google Scholar 

  74. Ju, J.; Chen, W. Synthesis of highly fluorescent nitrogendoped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens. Bioelectron. 2014, 58, 219–225.

    Article  Google Scholar 

  75. Sk, M. A.; Ananthanarayanan, A.; Huang, L.; Lim, K. H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960.

    Article  Google Scholar 

  76. Peng, H.; Li, Y.; Jiang, C. L.; Luo, C. H.; Qi, R. J.; Huang, R.; Duan, C. G.; Travas-Sejdic, J. Tuning the properties of luminescent nitrogen-doped carbon dots by reaction precursors. Carbon 2016, 100, 386–394.

    Article  Google Scholar 

  77. Sarkar, S.; Sudolská, M.; Dubecký, M.; Reckmeier, C. J.; Rogach, A. L.; Zbořil, R.; Otyepka, M. Graphitic nitrogen doping in carbon dots causes red-shifted absorption. J. Phys. Chem. C 2016, 120, 1303–1308.

    Article  Google Scholar 

  78. Reckmeier, C. J.; Wang, Y.; Zboril, R.; Rogach, A. L. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots. J. Phys. Chem. C 2016, 120, 10591–10604.

    Article  Google Scholar 

  79. Yan, X.; Cui, X.; Li, L. S. Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 2010, 132, 5944–5945.

    Article  Google Scholar 

  80. Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Photoluminescencetunable carbon nanodots: Surface-state energy-gap tuning. Adv. Mater. 2015, 27, 1663–1667.

    Article  Google Scholar 

  81. Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G.; Cai, C. Z.; Lin, H. W. Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angew. Chem., Int. Ed. 2015, 54, 5360–5363.

    Article  Google Scholar 

  82. Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.

    Article  Google Scholar 

  83. Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

    Article  Google Scholar 

  84. Liu, W. J.; Li, C.; Ren, Y. J.; Sun, X. B.; Pan, W.; Li, Y. H.; Wang, J. P.; Wang, W. J. Carbon dots: Surface engineering and applications. J. Mater. Chem. B 2016, 4, 5772–5788.

    Article  Google Scholar 

  85. Anilkumar, P.; Wang, X.; Cao, L.; Sahu, S.; Liu, J. H.; Wang, P.; Korch, K.; Tackett, K. N., II; Parenzan, A.; Sun, Y. P. Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 2011, 3, 2023–2027.

    Article  Google Scholar 

  86. Shen, J. H.; Zhu, Y. H.; Yang, X. L.; Zong, J.; Zhang, J. M.; Li, C. Z.One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 2012, 36, 97–101.

    Article  Google Scholar 

  87. Wu, Y. F.; Wu, H. C.; Kuan, C. H.; Lin, C. J.; Wang, L. W.; Chang, C. W.; Wang, T. W. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci. Rep. 2016, 6, 21170.

    Article  Google Scholar 

  88. Arcudi, F.; Đorđević, L.; Prato, M. Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon NanoDots. Angew. Chem. 2016, 128, 2147–2152.

    Article  Google Scholar 

  89. Anilkumar, P.; Cao, L.; Yu, J. J.; Tackett, K. N., II; Wang, P.; Meziani, M. J.; Sun, Y. P. Crosslinked carbon dots as ultra-bright fluorescence probes. Small 2013, 9, 545–551.

    Article  Google Scholar 

  90. Wang, X. D.; Wang, D.; Guo, Y. L.; Yang, C. D.; Iqbal, A.; Liu, W. S.; Qin, W. W.; Yan, D.; Guo, H. C. Imidazole derivative-functionalized carbon dots: Using as a fluorescent probe for detecting water and imaging of live cells. Dalton Trans. 2015, 44, 5547–5554.

    Article  Google Scholar 

  91. Li, Q.; Ohulchanskyy, T. Y.; Liu, R. L.; Koynov, K.; Wu, D. Q.; Best, A.; Kumar, R.; Bonoiu, A.; Prasad, P. N. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro. J. Phys. Chem. C 2010, 114, 12062–12068.

    Article  Google Scholar 

  92. Gonçalves, H.; Jorge, P. A. S.; Fernandes, J. R. A.; da Silva, J.C.G. E. Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation. Sensor. Actuat. B:Chem. 2010, 145, 702–707.

    Article  Google Scholar 

  93. Gonçalves, H.; Estevesda Silva, J.C.G. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J. Fluoresc. 2010, 20, 1023–1028.

    Article  Google Scholar 

  94. Yang, L.; Jiang, W. H.; Qiu, L. P.; Jiang, X. W.; Zuo, D. Y.; Wang, D. K.; Yang, L. One pot synthesis of highly luminescent polyethylene glycol anchored carbon dots functionalized with a nuclear localization signal peptide for cell nucleus imaging. Nanoscale 2015, 7, 6104–6113.

    Article  Google Scholar 

  95. Thakur, M.; Mewada, A.; Pandey, S.; Bhori, M.; Singh, K.; Sharon, M.; Sharon, M. Milk-derived multi-fluorescent graphene quantum dot-based cancer theranostic system. Mater. Sci. Eng.: C 2016, 67, 468–477.

    Article  Google Scholar 

  96. Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y.G. Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 2011, 21, 1027–1031.

    Article  Google Scholar 

  97. Wang, W. T.; Kim, T.; Yan, Z. F.; Zhu, G. S.; Cole, I.; Nguyen, N. T.; Li, Q. Carbon dots functionalized by organosilane with double-sided anchoring for nanomolar Hg2+ detection. J. Colloid Interface Sci. 2015, 437, 28–34.

    Article  Google Scholar 

  98. Huang, Y. F.; Zhou, X.; Zhou, R.; Zhang, H.; Kang, K. B.; Zhao, M.; Peng, Y.; Wang, Q.; Zhang, H. L.; Qiu, W. Y. One-Pot synthesis of highly luminescent carbon quantum dots and their nontoxic ingestion by zebrafish for in vivo imaging. Chem.—Eur. J. 2014, 20, 5640–5648.

    Article  Google Scholar 

  99. Wang, Y.; Li, Z. H.; Wang, J.; Li, J. H.; Lin, Y. H. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011, 29, 205–212.

    Article  Google Scholar 

  100. Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev. 2014, 43, 744–764.

    Article  Google Scholar 

  101. Sperling, R. A.; Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. A: Math. Phys. Eng. Sci. 2010, 368, 1333–1383.

    Article  Google Scholar 

  102. Li, H. L.; Zhang, Y. W.; Wang, L.; Tian, J. Q.; Sun, X. P. Nucleic acid detection using carbon nanoparticles as a fluorescent sensing platform. Chem. Commun. 2011, 47, 961–963.

    Article  Google Scholar 

  103. Liu, J. H.; Li, J. S.; Jiang, Y.; Yang, S.; Tan, W. H.; Yang, R. H. Combination of π–π stacking and electrostatic repulsion between carboxylic carbon nanoparticles and fluorescent oligonucleotides for rapid and sensitive detection of thrombin. Chem. Commun. 2011, 47, 11321–11323.

    Article  Google Scholar 

  104. Wang, Y. H.; Bao, L.; Liu, Z. H.; Pang, D. W. Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 2011, 83, 8130–8137.

    Article  Google Scholar 

  105. Qu, Q.; Zhu, A. W.; Shao, X. L.; Shi, G. Y.; Tian, Y. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Chem. Commun. 2012, 48, 5473–5475.

    Article  Google Scholar 

  106. Kong, B.; Zhu, A. W.; Ding, C. Q.; Zhao, X. M.; Li, B.; Tian, Y. Carbon dot-based inorganic–organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues. Adv. Mater. 2012, 24, 5844–5848.

    Article  Google Scholar 

  107. Liu, J. M.; Lin, L. P.; Wang, X. X.; Lin, S. Q.; Cai, W. L.; Zhang, L. H.; Zheng, Z. Y. Highly selective and sensitive detection of Cu2+ with lysine enhancing bovine serum albumin modified-carbon dots fluorescent probe. Analyst 2012, 137, 2637–2642.

    Article  Google Scholar 

  108. Yu, C. M.; Li, X. Z.; Zeng, F.; Zheng, F. Y.; Wu, S.Z. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. 2013, 49, 403–405.

    Article  Google Scholar 

  109. Wang, R. J.; Xu, Y.; Zhang, T.; Jiang, Y. Rapid and sensitive detection of Salmonella typhimurium using aptamerconjugated carbon dots as fluorescence probe. Anal. Methods 2015, 7, 1701–1706.

    Article  Google Scholar 

  110. Wisdom, G. B. Enzyme-immunoassay. Clin. Chem. 1976, 22, 1243–1255.

    Google Scholar 

  111. Zhu, L.; Cui, X.; Wu, J.; Wang, Z. N.; Wang, P. Y.; Hou, Y.; Yang, M. Fluorescence immunoassay based on carbon dots as labels for the detection of human immunoglobulin G. Anal. Methods 2014, 6, 4430–4436.

    Article  Google Scholar 

  112. Geho, D.; Lahar, N.; Gurnani, P.; Huebschman, M.; Herrmann, P.; Espina, V.; Shi, A.; Wulfkuhle, J.; Garner, H.; Petricoin, E. et al. Pegylated, steptavidin-conjugated quantum dots are effective detection elements for reversephase protein microarrays. Bioconjugate Chem. 2005, 16, 559–566.

    Article  Google Scholar 

  113. Wu, Y. Y.; Wei, P.; Pengpumkiat, S.; Schumacher, E. A.; Remcho, V. T. Development of a carbon dot (C-dot)-linked immunosorbent assay for the detection of human α-fetoprotein. Anal. Chem. 2015, 87, 8510–8516.

    Article  Google Scholar 

  114. Kurdekar, A.; Chunduri, L. A. A.; Bulagonda, E. P.; Haleyurgirisetty, M. K.; Kamisetti, V.; Hewlett, I. K. Comparative performance evaluation of carbon dot-based paper immunoassay on Whatman filter paper and nitrocellulose paper in the detection of HIV infection. Microfluid. Nanofluid. 2016, 20, 99.

    Article  Google Scholar 

  115. Bu, D.; Zhuang, H. S.; Yang, G. X.; Ping, X. X. An immunosensor designed for polybrominated biphenyl detection based on fluorescence resonance energy transfer (FRET) between carbon dots and gold nanoparticles. Sensor. Actuat. B:Chem. 2014, 195, 540–548.

    Article  Google Scholar 

  116. Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D. A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011, 192, 373–382.

    Article  Google Scholar 

  117. Milosavljevic, V.; Nguyen, H. V.; Michalek, P.; Moulick, A.; Kopel, P.; Kizek, R.; Adam, V. Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization. Chem. Pap. 2015, 69, 192–201.

    Article  Google Scholar 

  118. Noh, E. H.; Ko, H. Y.; Lee, C. H.; Jeong, M. S.; Chang, Y. W.; Kim, S. Carbon nanodot-based self-delivering microRNA sensor to visualize microRNA124a expression during neurogenesis. J. Mater. Chem. B 2013, 1, 4438–4445.

    Article  Google Scholar 

  119. Xu, B. L.; Zhao, C. Q.; Wei, W. L.; Ren, J. S.; Miyoshi, D.; Sugimoto, N.; Qu, X. G.Aptamer carbon nanodot sandwich used for fluorescent detection of protein. Analyst 2012, 137, 5483–5486.

    Article  Google Scholar 

  120. Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

    Article  Google Scholar 

  121. Feng, L. Y.; Zhao, A. D.; Ren, J. S.; Qu, X. G. Lighting up left-handed Z-DNA:Photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res. 2013, 41, 7987–7996.

    Article  Google Scholar 

  122. Xu, M. D.; Gao, Z. Q.; Zhou, Q.; Lin, Y. X.; Lu, M. H.; Tang, D. P. Terbium ion-coordinated carbon dots for fluorescent aptasensing of adenosine 5′-triphosphate with unmodified gold nanoparticles. Biosens. Bioelectron. 2016, 86, 978–984.

    Article  Google Scholar 

  123. Tang, C.; Qian, Z. S.; Huang, Y. Y.; Xu, J. M.; Ao, H.; Zhao, M. Z.; Zhou, J.; Chen, J. R.; Feng, H. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition.Biosens. Bioelectron. 2016, 83, 274–280.

    Article  Google Scholar 

  124. Li, G. L.; Fu, H. L.; Chen, X. J.; Gong, P. W.; Chen, G.; Xia, L.; Wang, H.; You, J. M.; Wu, Y. N. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal. Chem. 2016, 88, 2720–2726.

    Article  Google Scholar 

  125. Lu, S. M.; Li, G. L.; Lv, Z. X.; Qiu, N. N.; Kong, W. H.; Gong, P. W.; Chen, G.; Xia, L.; Guo, X. X.; You, J. M. et al. Facile and ultrasensitive fluorescence sensor platform for tumor invasive biomaker β-glucuronidase detection and inhibitor evaluation with carbon quantum dots based on inner-filter effect. Biosens. Bioelectron. 2016, 85, 358–362.

    Article  Google Scholar 

  126. Loo, A. H.; Sofer, Z.; Bouša, D.; Ulbrich, P.; Bonanni, A.; Pumera, M. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces 2016, 8, 1951–1957.

    Article  Google Scholar 

  127. Zhan, Z. X.; Cai, J.; Wang, Q.; Su, Y. Y.; Zhang, L. C.; Lv, Y. Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP. Luminescence 2016, 31, 626–632.

    Article  Google Scholar 

  128. Zhu, X. H.; Zhao, T. B.; Nie, Z.; Miao, Z.; Liu, Y.; Yao, S. Z.Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells. Nanoscale 2016, 8, 2205–2211.

    Article  Google Scholar 

  129. Tian, T.; Zhong, Y. P.; Deng, C.; Wang, H.; He, Y.; Ge, Y. L.; Song, G. W. Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 2017, 162, 135–142.

    Article  Google Scholar 

  130. Chai, L. L.; Zhou, J.; Feng, H.; Tang, C.; Huang, Y. Y.; Qian, Z.S. Functionalized carbon quantum dots with dopamine for tyrosinase activity monitoring and inhibitor screening: In vitro and intracellular investigation. ACS Appl. Mater. Interfaces 2015, 7, 23564–23574.

    Article  Google Scholar 

  131. Chen, H.; Xie, Y. J.; Kirillov, A.M.; Liu, L. L.; Yu, M. H.; Liu, W. S.; Tang, Y. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker. Chem. Commun. 2015, 51, 5036–5039.

    Article  Google Scholar 

  132. Shen, P. F.; Xia, Y.S. Synthesis-modification integration:Onestep fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Anal. Chem. 2014, 86, 5323–5329.

    Article  Google Scholar 

  133. Wu, G. F.; Zeng, F.; Yu, C. M.; Wu, S. Z.; Li, W. S. A ratiometric fluorescent nanoprobe for H2O2 sensing and in vivo detection of drug-induced oxidative damage to the digestive system. J. Mater. Chem. B 2014, 2, 8528–8537.

    Article  Google Scholar 

  134. Zhu, A. W.; Qu, Q.; Shao, X. L.; Kong, B.; Tian, Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem. 2012, 124, 7297–7301.

    Article  Google Scholar 

  135. Shi, Y. P.; Pan, Y.; Zhang, H.; Zhang, Z. M.; Li, M. J.; Yi, C. Q.; Yang, M. S. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens. Bioelectron. 2014, 56, 39–45.

    Article  Google Scholar 

  136. Weng, C. I.; Chang, H. T.; Lin, C. H.; Shen, Y. W.; Unnikrishnan, B.; Li, Y. J.; Huang, C. C. One-step synthesis of biofunctional carbon quantum dots for bacterial labeling. Biosens. Bioelectron. 2015, 68, 1–6.

    Article  Google Scholar 

  137. Song, Y. B.; Zhu, S. J.; Yang, B. Bioimaging based on fluorescent carbon dots. RSC Adv. 2014, 4, 27184–27200.

    Article  Google Scholar 

  138. Luo, P. G.; Sahu, S.; Yang, S. T.; Sonkar, S. K.; Wang, J. P.; Wang, H. F.; LeCroy, G. E.; Cao, L.; Sun, Y. P. Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 2013, 1, 2116–2127.

    Article  Google Scholar 

  139. Luo, P. G.; Yang, F.; Yang, S. T.; Sonkar, S. K.; Yang, L. J.; Broglie, J. J.; Liu, Y.; Sun, Y. P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014, 4, 10791–10807.

    Article  Google Scholar 

  140. Wang, J. L.; Qiu, J. J. A review of carbon dots in biological applications. J. Mater. Sci. 2016, 51, 4728–4738.

    Article  Google Scholar 

  141. Choi, H. S.; Liu, W. H.; Liu, F. B.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 2010, 5, 42–47.

    Article  Google Scholar 

  142. He, H.; Wang, X. J.; Feng, Z. Z.; Cheng, T. T.; Sun, X.; Sun, Y. W.; Xia, Y. Q.; Wang, S. J.; Wang, J. Y.; Zhang, X. D. Rapid microwave-assisted synthesis of ultra-bright fluorescent carbon dots for live cell staining, cell-specific targeting and in vivo imaging. J. Mater. Chem. B 2015, 3, 4786–4789.

    Article  Google Scholar 

  143. Chen, H. M.; Wang, G. D.; Sun, X. L.; Todd, T.; Zhang, F.; Xie, J.; Shen, B. Z. Mesoporous silica as nanoreactors to prepare Gd-encapsulated carbon dots of controllable sizes and magnetic properties. Adv. Funct. Mater. 2016, 26, 3973–3982.

    Article  Google Scholar 

  144. Bhunia, S. K.; Saha, A.; Maity, A. R.; Ray, S. C.; Jana, N. R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013, 3, 1473.

    Article  Google Scholar 

  145. Yang, Q. X.; Wei, L.; Zheng, X. F.; Xiao, L. H. Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Sci. Rep. 2015, 5, 17727.

    Article  Google Scholar 

  146. Lee, C. H.; Rajendran, R.; Jeong, M. S.; Ko, H. Y.; Joo, J. Y.; Cho, S.; Chang, Y. W.; Kim, S. Bioimaging of targeting cancers using aptamer-conjugated carbon nanodots. Chem. Commun. 2013, 49, 6543–6545.

    Article  Google Scholar 

  147. Han, B. F.; Wang, W. X.; Wu, H. Y.; Fang, F.; Wang, N. Z.; Zhang, X. J.; Xu, S. K. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids Surf. B:Biointerfaces 2012, 100, 209–214.

    Article  Google Scholar 

  148. Nandi, S.; Malishev, R.; Bhunia, S. K.; Kolusheva, S.; Jopp, J.; Jelinek, R. Lipid-bilayer dynamics probed by a carbon dot-phospholipid conjugate. Biophys. J. 2016, 110, 2016–2025.

    Article  Google Scholar 

  149. Zheng, X. T.; Than, A.; Ananthanaraya, A.; Kim, D. H.; Chen, P. Graphene quantum dots as universal fluorophores and their use in revealing regulated trafficking of insulin receptors in adipocytes. ACS Nano 2013, 7, 6278–6286.

    Article  Google Scholar 

  150. Chizhik, A. M.; Stein, S.; Dekaliuk, M. O.; Battle, C.; Li, W. X.; Huss, A.; Platen, M.; Schaap, I. A. T.; Gregor, I.; Demchenko, A. P. et al. Super-resolution optical fluctuation bio-imaging with dual-color carbon nanodots. Nano Lett. 2016, 16, 237–242.

    Article  Google Scholar 

  151. Kang, Y. F.; Fang, Y. W.; Li, Y. H.; Li, W.; Yin, X. B. Nucleus-staining with biomolecule-mimicking nitrogendoped carbon dots prepared by a fast neutralization heat strategy. Chem. Commun. 2015, 51, 16956–16959.

    Article  Google Scholar 

  152. Tong, G. S.; Wang, J. X.; Wang, R. B.; Guo, X. Q.; He, L.; Qiu, F.; Wang, G.; Zhu, B. S.; Zhu, X. Y.; Liu, T. Amorphous carbon dots with high two-photon fluorescence for cellular imaging passivated by hyperbranched poly(amino amine). J. Mater. Chem. B 2015, 3, 700–706.

    Article  Google Scholar 

  153. Gong, X. J.; Lu, W. J.; Liu, Y.; Li, Z. B.; Shuang, S. M.; Dong, C.; Choi, M. M. F. Low temperature synthesis of phosphorous and nitrogen co-doped yellow fluorescent carbon dots for sensing and bioimaging. J. Mater. Chem. B 2015, 3, 6813–6819.

    Article  Google Scholar 

  154. Jin, X. Z.; Sun, X. B.; Chen, G.; Ding, L. X.; Li, Y. H.; Liu, Z. K.; Wang, Z. J.; Pan, W.; Hu, C. H.; Wang, J. P. pH-sensitive carbon dots for the visualization of regulation of intracellular pH inside living pathogenic fungal cells. Carbon 2015, 81, 388–395.

    Article  Google Scholar 

  155. Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 2015, 7, 11727–11733.

    Article  Google Scholar 

  156. Alsawat, M.; Altalhi, T.; Kumeria, T.; Santos, A.; Losic, D. Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: Influence on molecular transport and chemical selectivity. Carbon 2015, 93, 681–692.

    Article  Google Scholar 

  157. Yuan, Y. H.; Liu, Z. X.; Li, R. S.; Zou, H. Y.; Lin, M.; Liu, H.; Huang, C. Z. Synthesis of nitrogen-doping carbon dots with different photoluminescence properties by controlling the surface states. Nanoscale 2016, 8, 6770–6776.

    Article  Google Scholar 

  158. Bandi, R.; Gangapuram, B. R.; Dadigala, R.; Eslavath, R.; Singh, S. S.; Guttena, V. Facile and green synthesis of fluorescent carbon dots from onion waste and their potential applications as sensor and multicolour imaging agents. RSC Adv. 2016, 6, 28633–28639.

    Article  Google Scholar 

  159. Shi, B. F.; Su, Y. B.; Zhang, L. L.; Huang, M. J.; Liu, R. J.; Zhao, S. L. Nitrogen and phosphorus co-doped carbon nanodots as a novel fluorescent probe for highly sensitive detection of Fe3+ in human serum and living cells. ACS Appl. Mater. Interfaces 2016, 8, 10717–10725.

    Article  Google Scholar 

  160. Ballou, B.; Ernst, L. A.; Andreko, S.; Fitzpatrick, J. A.; Lagerholm, B. C.; Waggoner, A. S.; Bruchez, M. P. Imaging vasculature and lymphatic flow in mice using quantum dots. In Bioluminescence: Methods and Protocols. Rich, P. B.; Douillet, C., Eds.; Humana Press: New York, 2009; pp 63–74.

    Chapter  Google Scholar 

  161. Langer, R.; Tirrell, D. A. Designing materials for biology and medicine. Nature 2004, 428, 487–492.

    Article  Google Scholar 

  162. Bagalkot, V.; Zhang, L. F.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007, 7, 3065–3070.

    Article  Google Scholar 

  163. Matai, I.; Sachdev, A.; Gopinath, P. Self-assembled hybrids of fluorescent carbon dots and PAMAM dendrimers for epirubicin delivery and intracellular imaging. ACS Appl. Mater. Interfaces 2015, 7, 11423–11435.

    Article  Google Scholar 

  164. Chowdhuri, A. R.; Tripathy, S.; Haldar, C.; Roy, S.; Sahu, S. K. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J. Mater. Chem. B 2015, 3, 9122–9131.

    Article  Google Scholar 

  165. Mewada, A.; Pandey, S.; Thakur, M.; Jadhav, D.; Sharon, M. Swarming carbon dots for folic acid mediated delivery of doxorubicin and biological imaging. J. Mater. Chem. B 2014, 2, 698–705.

    Article  Google Scholar 

  166. Liu, Z. N.; Chen, X.; Zhang, X. J.; Gooding, J. J.; Zhou, Y. S. Carbon-quantum-dots-loaded mesoporous silica nanocarriers with pH-switchable zwitterionic surface and enzyme-responsive pore-cap for targeted imaging and drug delivery to tumor. Adv. Healthc. Mater. 2016, 5, 1401–1407.

    Article  Google Scholar 

  167. Kim, J.; Park, J.; Kim, H.; Singha, K.; Kim, W. J. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials 2013, 34, 7168–7180.

    Article  Google Scholar 

  168. Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Charge-Convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 4410–4420.

    Article  Google Scholar 

  169. Krishna, A. S.; Radhakumary, C.; Priya, S. S.; Ramesan, R. M.; Kunnatheeri, S. Methotrexate anchored carbon dots as theranostic probes: Digitonin conjugation enhances cellular uptake and cytotoxicity. RSC Adv. 2016, 6, 56313–56318.

    Article  Google Scholar 

  170. Wang, B. B.; Wang, S. J.; Wang, Y. F.; Lv, Y.; Wu, H.; Ma, X. J.; Tan, M. Q. Highly fluorescent carbon dots for visible sensing of doxorubicin release based on efficient nanosurface energy transfer. Biotechnol. Lett. 2016, 38, 191–201.

    Article  Google Scholar 

  171. Samantara, A. K.; Maji, S.; Ghosh, A.; Bag, B.; Dash, R.; Jena, B. K. Good’s buffer derived highly emissive carbon quantum dots: Excellent biocompatible anticancer drug carrier. J. Mater. Chem. B 2016, 4, 2412–2420.

    Article  Google Scholar 

  172. Lai, C. W.; Hsiao, Y. H.; Peng, Y. K.; Chou, P. T. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem. 2012, 22, 14403–14409.

    Article  Google Scholar 

  173. Feng, T.; Ai, X. Z.; Ong, H.; Zhao, Y. L. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 18732–18740.

    Article  Google Scholar 

  174. Zeng, Q. H.; Shao, D.; He, X.; Ren, Z. Y.; Ji, W. Y.; Shan, C. X.; Qu, S. N.; Li, J.; Chen, L.; Li, Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J. Mater. Chem. B 2016, 4, 5119–5126.

    Article  Google Scholar 

  175. Zhou, J.; Deng, W. W.; Wang, Y.; Cao, X.; Chen, J. J.; Wang, Q.; Xu, W. Q.; Du, P.; Yu, Q. T.; Chen, J. X. et al. Cationic carbon quantum dots derived from alginate for gene delivery:One-step synthesis and cellular uptake. Acta Biomater. 2016, 42, 209–219.

    Article  Google Scholar 

  176. Hu, L. M.; Sun, Y.; Li, S. L.; Wang, X. L.; Hu, K. L.; Wang, L. R.; Liang, X. J.; Wu, Y. Multifunctional carbon dots with high quantum yield for imaging and gene delivery. Carbon 2014, 67, 508–513.

    Article  Google Scholar 

  177. Pierrat, P.; Wang, R. R.; Kereselidze, D.; Lux, M.; Didier, P.; Kichler, A.; Pons, F.; Lebeau, L. Efficient in vitro and in vivo pulmonary delivery of nucleic acid by carbon dot-based nanocarriers. Biomaterials 2015, 51, 290–302.

    Article  Google Scholar 

  178. Wang, Q.; Zhang, C. L.; Shen, G. X.; Liu, H. Y.; Fu, H. L.; Cui, D. X. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J. Nanobiotechnol. 2014, 12, 58.

    Article  Google Scholar 

  179. Wang, Z. G.; Fu, B. S.; Zou, S. W.; Duan, B.; Chang, C. Y.; Yang, B.; Zhou, X.; Zhang, L. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 2016, 9, 214–223.

    Article  Google Scholar 

  180. Wang, Q. L.; Huang, X. X.; Long, Y. J.; Wang, X. L.; Zhang, H. J.; Zhu, R.; Liang, L. P.; Teng, P.; Zheng, H. Z. Hollow luminescent carbon dots for drug delivery. Carbon 2013, 59, 192–199.

    Article  Google Scholar 

  181. Hsu, P. C.; Chen, P. C.; Ou, C. M.; Chang, H. Y.; Chang, H. T. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B 2013, 1, 1774–1781.

    Article  Google Scholar 

  182. Bing, W.; Sun, H. J.; Yan, Z. Q.; Ren, J. S.; Qu, X. G. Programmed bacteria death induced by carbon dots with different surface charge. Small 2016, 12, 4713–4718.

    Article  Google Scholar 

  183. Li, S. H.; Wang, L. Y.; Chusuei, C. C.; Suarez, V. M.; Blackwelder, P. L.; Micic, M.; Orbulescu, J.; Leblanc, R. M. Nontoxic carbon dots potently inhibit human insulin fibrillation. Chem. Mater. 2015, 27, 1764–1771.

    Article  Google Scholar 

  184. Karthik, S.; Saha, B.; Ghosh, S. K.; Singh, N. D. P. Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem. Commun. 2013, 49, 10471–10473.

    Article  Google Scholar 

  185. Manthe, R. L.; Foy, S. P.; Krishnamurthy, N.; Sharma, B.; Labhasetwar, V. Tumor ablation and nanotechnology. Mol. Pharmaceutics 2010, 7, 1880–1898.

    Article  Google Scholar 

  186. Fisher, A. M. R.; Murphree, A.L.; Gomer, C. J. Clinical and preclinical photodynamic therapy. Lasers Surg. Med. 1995, 17, 2–31.

    Article  Google Scholar 

  187. Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizerconjugated carbon dots for simultaneous enhancedfluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5104–5110.

    Article  Google Scholar 

  188. Fowley, C.; Nomikou, N.; McHale, A. P.; McCaughan, B.; Callan, J. F. Extending the tissue penetration capability of conventional photosensitisers: Acarbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy.Chem. Commun. 2013, 49, 8934–8936.

    Google Scholar 

  189. Ge, J. C.; Lan, M. H.; Zhou, B. J.; Liu, W. M.; Guo, L.; Wang, H.; Jia, Q. Y.; Niu, G. L.; Huang, X.; Zhou, H. Y. et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 2014, 5, 4596.

    Google Scholar 

  190. Ge, J. C.; Lan, M. H.; Liu, W. M.; Jia, Q. Y.; Guo, L.; Zhou, B. J.; Meng, X. M.; Niu, G. L.; Wang, P. F. Graphene quantum dots as efficient, metal-free, visible-light-active photocatalysts. Sci. China Mater. 2016, 59, 12–19.

    Article  Google Scholar 

  191. Meziani, M. J.; Dong, X. L.; Zhu, L.; Jones, L. P.; LeCroy, G. E.; Yang, F.; Wang, S. Y.; Wang, P.; Zhao, Y. P.; Yang, L. J. et al. Visible-light-activated bactericidal functions of carbon “Quantum” dots. ACS Appl. Mater. Interfaces 2016, 8, 10761–10766.

    Article  Google Scholar 

  192. Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715–8722.

    Article  Google Scholar 

  193. Zhang, J. Z. Biomedical applications of shape-controlled plasmonic nanostructures: Acase study of hollow gold nanospheres for photothermal ablation therapy of cancer. J. Phys. Chem. Lett. 2010, 1, 686–695.

    Article  Google Scholar 

  194. Saxton, R. E.; Paiva, M. B.; Lufkin, R. B.; Castro, D. J. Laser photochemotherapy: Aless invasive approach for treatment of cancer. Semin. Surg. Oncol. 1995, 11, 283–289.

    Article  Google Scholar 

  195. Nurunnabi, M.; Khatun, Z.; Reeck, G. R.; Lee, D. Y.; Lee, Y. K. Photoluminescent graphene nanoparticles for cancer phototherapy and imaging. ACS Appl. Mater. Interfaces 2014, 6, 12413–12421.

    Article  Google Scholar 

  196. Li, Y.; Zhang, X. Y.; Zheng, M.; Liu, S.; Xie, Z. G. Dopamine carbon nanodots as effective photothermal agents for cancer therapy. RSC Adv. 2016, 6, 54087–54091.

    Article  Google Scholar 

  197. Li, D.; Han, D.; Qu, S. N.; Liu, L.; Jing, P. T.; Zhou, D.; Ji, W. Y.; Wang, X. Y.; Zhang, T. F.; Shen, D. Z. Supra- (carbon nanodots) with a strong visible to near-infrared absorption band and efficient photothermal conversion. Light: Sci. Appl. 2016, 5, e16120.

    Article  Google Scholar 

  198. Wang, H.; Sun, Y. B.; Yi, J. H.; Fu, J. P.; Di, J.; del Carmen Alonso, A.; Zhou, S. Q. Fluorescent porous carbon nanocapsules for two-photon imaging, NIR/pH dual-responsive drug carrier, and photothermal therapy. Biomaterials 2015, 53, 117–126.

    Article  Google Scholar 

  199. Lemaster, J. E.; Jokerst, J. V. What is new in nanoparticlebased photoacoustic imaging? WIREs: Nanomed. Nanobiotechnol. 2017, 9, e1404.

    Google Scholar 

  200. Miao, Z. H.; Wang, H.; Yang, H.; Li, Z.; Zhen, L.; Xu, C. Y. Glucose-derived carbonaceous nanospheres for photoacoustic imaging and photothermal therapy. ACS Appl. Mater. Interfaces 2016, 8, 15904–15910.

    Article  Google Scholar 

  201. Wu, L.; Cai, X.; Nelson, K.; Xing, W. X.; Xia, J.; Zhang, R. Y.; Stacy, A.J.; Luderer, M.; Lanza, G. M.; Wang, L. V. et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res. 2013, 6, 312–325.

    Article  Google Scholar 

  202. Louie, A. Multimodality imaging probes: Design and challenges. Chem. Rev. 2010, 110, 3146–3195.

    Article  Google Scholar 

  203. Bourlinos, A. B.; Bakandritsos, A.; Kouloumpis, A.; Gournis, D.; Krysmann, M.; Giannelis, E. P.; Polakova, K.; Safarova, K.; Hola, K.; Zboril, R. Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 2012, 22, 23327–23330.

    Article  Google Scholar 

  204. Xu, Y.; Jia, X. H.; Yin, X. B.; He, X. W.; Zhang, Y. K. Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Anal. Chem. 2014, 86, 12122–12129.

    Article  Google Scholar 

  205. Gong, N. Q.; Wang, H.; Li, S.; Deng, Y. L.; Chen, X. A.; Ye, L.; Gu, W. Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 2014, 30, 10933–10939.

    Article  Google Scholar 

  206. Shi, Y. P.; Pan, Y.; Zhong, J.; Yang, J.; Zheng, J. H.; Cheng, J. L.; Song, R.; Yi, C. Q. Facile synthesis of gadolinium (III) chelates functionalized carbon quantum dots for fluorescence and magnetic resonance dual-modal bioimaging. Carbon 2015, 93, 742–750.

    Article  Google Scholar 

  207. Liu, X. L.; Jiang, H.; Ye, J.; Zhao, C. Q.; Gao, S. P.; Wu, C. Y.; Li, C. H.; Li, J. C.; Wang, X. M. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging. Adv. Funct. Mater. 2016, 26, 8694–8706.

    Article  Google Scholar 

  208. Mohapatra, S.; Rout, S. R.; Das, R. K.; Nayak, S.; Ghosh, S. K. Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 2016, 32, 1611–1620.

    Article  Google Scholar 

  209. Zheng, M.; Liu, S.; Li, J.; Qu, D.; Zhao, H. F.; Guan, X.; Hu, X. L.; Xie, Z. G.; Jing, X. B.; Sun, Z. C. Integrating oxaliplatin with highly luminescent carbon dots:An unprecedented theranostic agent for personalized medicine. Adv. Mater. 2014, 26, 3554–3560.

    Article  Google Scholar 

  210. Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging. Adv. Mater. 2013, 25, 6569–6574.

    Article  Google Scholar 

  211. Mukherjee, P.; Misra, S. K.; Gryka, M. C.; Chang, H. H.; Tiwari, S.; Wilson, W. L.; Scott, J. W.; Bhargava, R.; Pan, D. Tunable luminescent carbon nanospheres with well-defined nanoscale chemistry for synchronized imaging and therapy. Small 2015, 11, 4691–4703.

    Article  Google Scholar 

  212. Wang, H.; Shen, J.; Li, Y. Y.; Wei, Z. Y.; Cao, G. X.; Gai, Z.; Hong, K. L.; Banerjee, P.; Zhou, S. Q. Magnetic iron oxide–fluorescent carbon dots integrated nanoparticles for dual-modal imaging, near-infrared light-responsive drug carrier and photothermal therapy. Biomater. Sci. 2014, 2, 915–923.

    Article  Google Scholar 

  213. Wang, H.; Mararenko, A.; Cao, G. X.; Gai, Z.; Hong, K. L.; Banerjee, P.; Zhou, S. Q. Multifunctional 1D magnetic and fluorescent nanoparticle chains for enhanced MRI, fluorescent cell imaging, and combined photothermal/ chemotherapy. ACS Appl. Mater. Interfaces 2014, 6, 15309–15317.

    Article  Google Scholar 

  214. Zhou, L.; Dong, K.; Chen, Z. W.; Ren, J. S.; Qu, X. G.Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy. Carbon 2015, 82, 479–488.

    Article  Google Scholar 

  215. Jia, Q. Y.; Ge, J. C.; Liu, W. M.; Liu, S.; Niu, G. L.; Guo, L.; Zhang, H. Y.; Wang, P. F. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/ photothermal therapy. Nanoscale 2016, 8, 13067–13077.

    Article  Google Scholar 

  216. Kleinauskas, A.; Rocha, S.; Sahu, S.; Sun, Y. P.; Juzenas, P. Carbon-core silver-shell nanodots as sensitizers for phototherapy and radiotherapy. Nanotechnology 2013, 24, 325103.

    Article  Google Scholar 

  217. Zhang, J. H.; Niu, A. P.; Li, J.; Fu, J. W.; Xu, Q.; Pei, D. S. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish. Sci. Rep. 2016, 6, 37860.

    Article  Google Scholar 

  218. Wang, J.; He, Y. Carbon dots: Synthesis, bioimaging, and biosafety assessment. In Biomedical Applications and Toxicology of Carbon Nanomaterials. Chen, C. Y.; Wang, H. F., Eds.; Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2016; pp 429–486.

    Chapter  Google Scholar 

  219. Zhao, A. D.; Chen, Z. W.; Zhao, C. Q.; Gao, N.; Ren, J. S.; Qu, X. G. Recent advances in bioapplications of C-dots. Carbon 2015, 85, 309–327.

    Article  Google Scholar 

  220. Oberdörster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D. et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8.

    Article  Google Scholar 

  221. Zhang, Z. W.; Duan, Y.; Yu, Y.; Yan, Z. Y.; Chen, J. Q. Carbon quantum dots: Synthesis, characterization, and assessment of cytocompatibility. J. Mater. Sci.: Mater. Med. 2015, 26, 213.

    Google Scholar 

  222. Huang, X. L.; Zhang, F.; Zhu, L.; Choi, K. Y.; Guo, N.; Guo, J. X.; Tackett, K.; Anilkumar, P.; Liu, G.; Quan, Q. M. et al. Effect of injection routes on the biodistribution, clearance, and tumor uptake of carbon dots. ACS Nano 2013, 7, 5684–5693.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of postgraduate scholarships for conducting this work. There are no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent G. Gomes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, M., Gomes, V.G., Dehghani, A. et al. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 11, 1–41 (2018). https://doi.org/10.1007/s12274-017-1616-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1616-1

Keywords

Navigation