Skip to main content
Log in

Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Monodisperse graphene oxide (GO) microspheres were synthesized via microfluidics technology as a novel adsorbent for rapid (in 2 min) and high efficiency (98%) removal of perfluorooctane sulfonate (PFOS) from water. This novel material is a potential solution for treatment of bioaccumulative organic polluted water. To achieve improved performance, Mg2+ was introduced into GO, and the metal composite exhibited significantly improved PFOS removal efficiency owing to bridging and interaction between Mg2+ and the PFOS molecules, which was supported by density functional theory and X-ray photoelectron spectroscopy (XPS). This facile strategy may be extended to the synthesis of other spheres with unique structural features for application in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quiñones, O.; Snyder, S. Occurrence of perfluoroalkyl carboxylates and sulfonates in drinking water utilities and related waters from the United States. Environ. Sci. Technol. 2009, 43, 9089–9095.

    Article  Google Scholar 

  2. Beesoon, S.; Martin, J. W. Isomer-specific binding affinity of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to serum proteins. Environ. Sci. Technol. 2015, 49, 5722–5731.

    Article  Google Scholar 

  3. Pual, A. G.; Jones, K. C.; Sweetman, A. J. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386–392.

    Article  Google Scholar 

  4. Deng, S. B.; Zhou, Q.; Yu, G.; Huang, J.; Fan, Q. Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation. Water Res. 2011, 45, 1774–1780.

    Article  Google Scholar 

  5. Lasier, P. J.; Washington, J. W.; Hassan, S. M.; Jenkins, T. M. Perfluorinated chemicals in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus variegatus. Environ. Toxicol. Chem. 2011, 30, 2194–2201.

    Article  Google Scholar 

  6. Lupton, S. J.; Huwe, J. K.; Smith, D. J.; Dearfield, L. L.; Johnston, J. J. Distribution and excretion of perfluorooctane sulfonate (PFOS) in beef cattle (Bos taurus). J. Agric. Food Chem. 2014, 62, 1167–1173.

    Article  Google Scholar 

  7. Hansmeier, N.; Chao, T. C.; Herbstman, J. B.; Goldman, L. R.; Witter, F. R.; Halden, R. U. Elucidating the molecular basis of adverse health effects from exposure to anthropogenic polyfluorinated compounds using toxicoproteomic approaches. J. Proteome Res. 2015, 14, 51–58.

    Article  Google Scholar 

  8. Cressey, D. Manufacturing chemicals may damage the immune system. Nature News [Online], Jan 24, 2012. http://www.nature.com/news/manufacturing-chemicals-maydamage-the-immune-system-1.9877 (accessed Nov 20, 2015).

    Google Scholar 

  9. Eschauzier, C.; Beerendonk, E.; Scholte-Veenendaal, P.; de Voogt, P. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain. Environ. Sci. Technol. 2012, 46, 1708–1715.

    Article  Google Scholar 

  10. Wang, T.; Wang, Y. W.; Liao, C. Y.; Cai, Y. Q.; Jiang, G. B. Perspectives on the inclusion of perfluorooctane sulfonate into the stockholm convention on persistent organic pollutants. Environ. Sci. Technol. 2009, 43, 5171–5175.

    Article  Google Scholar 

  11. Yan, T. T.; Chen, H.; Jiang, F.; Wang, X. Adsorption of perfluorooctane sulfonate and perfluorooctanoic acid on magnetic mesoporous carbon nitride. J. Chem. Eng. Data 2014, 59, 508–515.

    Article  Google Scholar 

  12. Gao, Y.; Fu, J. J.; Cao, H. M.; Wang, Y. W.; Zhang, A. Q.; Liang, Y.; Wang, T.; Zhao, C. Y.; Jiang, G. B. Differential accumulation and elimination behavior of perfluoroalkyl acid isomers in occupational workers in a manufactory in China. Environ. Sci. Technol. 2015, 49, 6953–6962.

    Article  Google Scholar 

  13. Fu, Z. Q.; Wang, Y.; Wang, Z. Y.; Xie, H. B.; Chen, J. W. Transformation pathways of isomeric perfluorooctanesulfonate precursors catalyzed by the active species of P450 enzymes: In silico investigation. Chem. Res. Toxicol. 2015, 28, 482–489.

    Article  Google Scholar 

  14. Wang, T.; Zhao, C. W.; Li, P.; Li, Y.; Wang, J. Fabrication of novel poly(m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. J. Membr. Sci. 2015, 477, 74–85.

    Article  Google Scholar 

  15. Arvaniti, O. S.; Hwang, Y.; Andersen, H. R.; Stasinakis, A. S.; Thomaidis, N. S.; Aloupi, M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem. Eng. J. 2015, 262, 133–139.

    Article  Google Scholar 

  16. Lin, H.; Wang, Y. J.; Niu, J. F.; Yue, Z. H.; Huang, Q. G. Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation. Environ. Sci. Technol. 2015, 49, 10562–10569.

    Article  Google Scholar 

  17. Lyu, X. J.; Li, W. W.; Lam, P. K. S.; Yu, H. Q. Insights into perfluorooctane sulfonate photodegradation in a catalystfree aqueous solution. Sci. Rep. 2015, 5, 9353.

    Article  Google Scholar 

  18. Kleinstreuer, N. C.; Yang, J.; Berg, E. L.; Knudsen, T. B.; Richard, A. M.; Martin, M. T.; Reif, D. M.; Judson, R. S.; Polokoff, M.; Dix, D. J. et al. Phenotypic screening of the toxcast chemical library to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 2014, 32, 583–591.

    Article  Google Scholar 

  19. Zhang, Q. Y.; Deng, S. B.; Yu, G.; Huang, J. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechamism. Bio. Technol. 2011, 102, 2265–2271.

    Article  Google Scholar 

  20. Higgins, C. P.; Luthy, R. G. Sorption of perfluorinated surfactants on sediments. Environ. Sci. Technol. 2006, 40, 7251–7256.

    Article  Google Scholar 

  21. Li, X. N.; Chen, S.; Quan, X.; Zhang, Y. B. Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environ. Sci. Technol. 2011, 45, 8498–8505.

    Article  Google Scholar 

  22. Liu, A. D.; Goktekin, E.; Gleason, K. K. Cross-linking and ultrathin grafted gradation of fluorinated polymers synthesized via initiated chemical vapor deposition to prevent surface reconstruction. Langmuir 2014, 30, 14189–14194.

    Article  Google Scholar 

  23. Yu, Q.; Zhang, R. Q.; Deng, S. B.; Huang, J.; Yu, G. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Res. 2009, 43, 1150–1158.

    Article  Google Scholar 

  24. Xia, X. H.; Chen, X.; Zhao, X. L.; Chen, H. T.; Shen, M. H. Effects of carbon nanotubes, chars, and ash on bioaccumulation of perfluorochemicals by Chironomus plumosus larvae in sediment. Environ. Sci. Technol. 2012, 46, 12467–12475.

    Article  Google Scholar 

  25. Xu, J.; Wang, L.; Zhu, Y. F. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 2012, 28, 8418–8425.

    Article  Google Scholar 

  26. Pal, S. K. Versatile photoluminescence from graphene and its derivatives. Carbon 2015, 88, 86–112.

    Article  Google Scholar 

  27. Wang, X. B.; Huang, S. S.; Zhu, L. H.; Tian, X. L.; Li, S. H.; Tang, H. Q. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon 2014, 69, 101–112.

    Article  Google Scholar 

  28. Li, Y. H.; Du, Q. J.; Liu, T. H.; Sun, J. K.; Jiao, Y. Q.; Xia, Y. Z.; Xia, L. H.; Wang, Z. H.; Zhang, W.; Wang, K. L. et al. Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto graphene. Mater. Res. Bull. 2012, 47, 1898–1904.

    Article  Google Scholar 

  29. Liu, T. H.; Li, Y. H.; Du, Q. J.; Sun, J. K.; Jiao, Y. Q.; Yang, G. M.; Wang, Z. H.; Xia, Y. Z.; Zhang, W.; Wang, K. L. et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 2012, 90, 197–203.

    Article  Google Scholar 

  30. Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles. Nanoscale 2015, 7, 17441–17449.

    Article  Google Scholar 

  31. Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186.

    Article  Google Scholar 

  32. Madadrang, C. J.; Kim, H. Y.; Gao, G. H.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M. L.; Hou, S. F. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193.

    Article  Google Scholar 

  33. Wang, W.; Zhang, M. J.; Chu, L. Y. Microfluidic approach for encapsulation via double emulsions. Curr. Opin. Pharmacol. 2014, 18, 35–41.

    Article  Google Scholar 

  34. Abate, A. R.; Kutsovsky, M.; Seiffert, S.; Windbergs, M.; Pinto, L. F. V.; Rotem, A.; Utada, A. S.; Weitz, D. A. Synthesis of monodisperse microparticles from non-newtonian polymer solutions with microfluidic devices. Adv. Mater. 2011, 23, 1757–1760.

    Article  Google Scholar 

  35. Kim, S. H.; Weitz, D. A. One-step emulsification of multiple concentric shells with capillary microfluidic devices. Angew. Chem. 2011, 123, 8890–8893.

    Article  Google Scholar 

  36. Chen, L. D.; Lai, C.-Z.; Granda, L. P.; Fierke, M. A.; Mandal, D.; Stein, A.; Gladysz, J. A.; Bühlmann, P. Fluorous membrane ion-selective electrodes for perfluorinated surfactants: Trace-level detection and in situ monitoring of adsorption. Anal. Chem. 2013, 85, 7471–7477.

    Article  Google Scholar 

  37. Abolhasani, M.; Günther, A.; Kumacheva, E. Microfluidic studies of carbon dioxide. Angew. Chem., Int. Ed. 2014, 53, 7992–8002.

    Article  Google Scholar 

  38. Abou-Hassan, A.; Sandre, O.; Cabuil, V. Microfluidics in inorganic chemistry. Angew. Chem., Int. Ed. 2010, 49, 6268–6286.

    Article  Google Scholar 

  39. Lewis, G. G.; DiTucci, M. J.; Phillips, S. T. Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem., Int. Ed. 2012, 51, 12707–12710.

    Article  Google Scholar 

  40. Safavieh, M.; Qasaimeh, M. A.; Vakil, A.; Juncker, D.; Gervais, T. Erratum: Two-aperture microfluidic probes as flow dipoles: Theory and applications. Sci. Rep. 2015, 5, 14885.

    Article  Google Scholar 

  41. Ng, A. H. C.; Chamberlain, M. D.; Situ, H.; Lee, V.; Wheeler, A. R. Digital microfluidic immunocytochemistry in single cells. Nat. Commun. 2015, 6, 7513.

    Article  Google Scholar 

  42. Yan, J.; Hu, M.; Li, D.; He, Y.; Zhao, R.; Jiang, X. Y.; Song, S. P.; Wang, L. H.; Fan, C. H. A nano- and microintegrated protein chip based on quantum dot probes and a microfluidic network. Nano Res. 2008, 1, 490–496.

    Article  Google Scholar 

  43. Li, S. W.; Xu, J. H.; Wang, Y. J.; Luo, G. S. Controllable preparation of nanoparticles by drops and plugs flow in a microchannel device. Langmuir 2008, 24, 4194–4199.

    Article  Google Scholar 

  44. Zhao, Y. J.; Gu, H. C.; Xie, Z. Y.; Shum, H. C.; Wang, B. P.; Gu, Z. Z. Bioinspired multifunctional Janus particles for droplet manipulation. J. Am. Chem. Soc. 2013, 135, 54–57.

    Article  Google Scholar 

  45. Jeong, W. C.; Lim, J. M.; Choi, J. H.; Kim, J. H.; Lee, Y. J.; Kim, S. H.; Lee, G.; Kim, J. D.; Yi, G. R.; Yang, S. M. Controlled generation of submicron emulsion droplets via highly stable tip-streaming mode in microfluidic devices. Lab Chip 2012, 12, 1446–1453.

    Article  Google Scholar 

  46. Persson, H.; Beech, J. P.; Samuelson, L.; Oredsson, S.; Prinz, C. N.; Tegenfeldt, J. O. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res. 2012, 5, 190–198.

    Article  Google Scholar 

  47. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  Google Scholar 

  48. Spyrou, K.; Calvaresi, M.; Diamanti, E. K.; Tsoufis, T., Gournis, D.; Rudolf, P.; Zerbetto, F. Graphite oxide and aromatic amines: Size matters. Adv. Funct. Mater. 2015, 25, 263–269.

    Article  Google Scholar 

  49. Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon nanotubes. Nano Res. 2010, 3, 138–145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Fan, J., Chen, D. et al. Microfluidics-generated graphene oxide microspheres and their application to removal of perfluorooctane sulfonate from polluted water. Nano Res. 9, 866–875 (2016). https://doi.org/10.1007/s12274-015-0968-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0968-7

Keywords

Navigation