Skip to main content
Log in

Autonomic Neuromodulation Acutely Ameliorates Left Ventricular Strain in Humans

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Low-level transcutaneous vagus nerve stimulation at the tragus (LLTS) is anti-adrenergic. We aimed to evaluate the acute effects of LLTS on left ventricular (LV) function and autonomic tone. Patients with diastolic dysfunction and preserved LV ejection fraction were enrolled in a prospective, randomized, double-blind, 2 × 2 cross-over study. Patients received two separate, 1-h sessions, at least 1 day apart, of active LLTS (20 Hz, 1 mA below the discomfort threshold) and sham stimulation. Echocardiography was performed after LLTS or sham stimulation to assess cardiac function. A 5-min ECG was performed to assess heart rate variability (HRV). Twenty-four patients were enrolled. LV global longitudinal strain improved by 1.8 ± 0.9% during active LLTS compared to sham stimulation (p = 0.001). Relative to baseline, HRV frequency domain components (low frequency, high frequency, and their ratio) were favorably altered after LLTS compared to sham stimulation (all p < 0.05). We concluded that LLTS acutely ameliorates cardiac mechanics by modulating the autonomic tone. Trial registration: NCT02983448

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HFpEF:

Heart failure with preserved ejection fraction

LV:

Left ventricle

HFrEF:

Heart failure with reduced ejection fraction

VNS:

Vagus nerve stimulation

LLTS:

Low-level transcutaneous vagus nerve stimulation

TENS:

Transcutaneous electrical nerve stimulation

GLS:

Global longitudinal strain

HRV:

Heart rate variability

HF:

High frequency

LF:

Low frequency

References

  1. Lam, C. S., Donal, E., Kraigher-Krainer, E., & Vasan, R. S. (2011). Epidemiology and clinical course of heart failure with preserved ejection fraction. European Journal of Heart Failure, 13(1), 18–28.

    Article  Google Scholar 

  2. Owan, T. E., Hodge, D. O., Herges, R. M., Jacobsen, S. J., Roger, V. L., & Redfield, M. M. (2006). Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine, 355(3), 251–259.

    Article  CAS  Google Scholar 

  3. Fonarow, G. C., Stough, W. G., Abraham, W. T., Albert, N. M., Gheorghiade, M., Greenberg, B. H., O'Connor, C. M., Sun, J. L., Yancy, C. W., & Young, J. B. (2007). Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. Journal of the American College of Cardiology, 50(8), 768–777.

    Article  Google Scholar 

  4. Tribouilloy, C., Rusinaru, D., Mahjoub, H., Souliere, V., Levy, F., Peltier, M., Slama, M., & Massy, Z. (2008). Prognosis of heart failure with preserved ejection fraction: a 5 year prospective population-based study. European Heart Journal, 29(3), 339–347.

    Article  Google Scholar 

  5. Butler, J., Fonarow, G. C., Zile, M. R., Lam, C. S., Roessig, L., Schelbert, E. B., Shah, S. J., Ahmed, A., Bonow, R. O., Cleland, J. G., Cody, R. J., Chioncel, O., Collins, S. P., Dunnmon, P., Filippatos, G., Lefkowitz, M. P., Marti, C. N., McMurray, J. J., Misselwitz, F., Nodari, S., O'Connor, C., Pfeffer, M. A., Pieske, B., Pitt, B., Rosano, G., Sabbah, H. N., Senni, M., Solomon, S. D., Stockbridge, N., Teerlink, J. R., Georgiopoulou, V. V., & Gheorghiade, M. (2014). Developing therapies for heart failure with preserved ejection fraction: current state and future directions. JACC Heart Failure, 2(2), 97–112.

    Article  Google Scholar 

  6. Senni, M., Paulus, W. J., Gavazzi, A., Fraser, A. G., Diez, J., Solomon, S. D., Smiseth, O. A., Guazzi, M., Lam, C. S., Maggioni, A. P., Tschope, C., Metra, M., Hummel, S. L., Edelmann, F., Ambrosio, G., Stewart Coats, A. J., Filippatos, G. S., Gheorghiade, M., Anker, S. D., Levy, D., Pfeffer, M. A., Stough, W. G., & Pieske, B. M. (2014). New strategies for heart failure with preserved ejection fraction: the importance of targeted therapies for heart failure phenotypes. European Heart Journal, 35(40), 2797–2815.

    Article  Google Scholar 

  7. Glezeva, N., & Baugh, J. A. (2014). Role of inflammation in the pathogenesis of heart failure with preserved ejection fraction and its potential as a therapeutic target. Heart Failure Reviews, 19(5), 681–694.

    Article  CAS  Google Scholar 

  8. Gomberg-Maitland, M., Shah, S. J., & Guazzi, M. (2016). Inflammation in heart failure with preserved ejection fraction: time to put out the fire. JACC Heart Failure, 4(4), 325–328.

    Article  Google Scholar 

  9. Paulus, W. J., & Tschope, C. (2013). A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology, 62(4), 263–271.

    Article  Google Scholar 

  10. Kraigher-Krainer, E., Shah, A. M., Gupta, D. K., Santos, A., Claggett, B., Pieske, B., Zile, M. R., Voors, A. A., Lefkowitz, M. P., Packer, M., McMurray, J. J., Solomon, S. D., & Investigators, P. (2014). Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. Journal of the American College of Cardiology, 63(5), 447–456.

    Article  Google Scholar 

  11. Aikawa, T., Naya, M., Obara, M., Manabe, O., Tomiyama, Y., Magota, K., Yamada, S., Katoh, C., Tamaki, N., & Tsutsui, H. (2017). Impaired myocardial sympathetic innervation is associated with diastolic dysfunction in heart failure with preserved ejection fraction: (11)C-hydroxyephedrine PET study. Journal of Nuclear Medicine, 58(5), 784–790.

    Article  CAS  Google Scholar 

  12. Toledo, C., Andrade, D. C., Lucero, C., Arce-Alvarez, A., Diaz, H. S., Aliaga, V., Schultz, H. D., Marcus, N. J., Manriquez, M., Faundez, M., & Del Rio, R. (2017). Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. The Journal of Physiology, 595(8), 2479–2495.

    Article  CAS  Google Scholar 

  13. Pavlov, V. A., & Tracey, K. J. (2015). Neural circuitry and immunity. Immunologic Research, 63(1–3), 38–57.

    Article  CAS  Google Scholar 

  14. Tracey, K. J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9(6), 418–428.

    Article  CAS  Google Scholar 

  15. Beaumont, E., Wright, G. L., Southerland, E. M., Li, Y., Chui, R., KenKnight, B. H., Armour, J. A., & Ardell, J. L. (2016). Vagus nerve stimulation mitigates intrinsic cardiac neuronal remodeling and cardiac hypertrophy induced by chronic pressure overload in guinea pig. American Journal of Physiology. Heart and Circulatory Physiology, 310(10), H1349–H1359.

    Article  Google Scholar 

  16. Fallgatter, A. J., Neuhauser, B., Herrmann, M. J., Ehlis, A. C., Wagener, A., Scheuerpflug, P., Reiners, K., & Riederer, P. (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Journal of Neural Transmission, 110(12), 1437–1443.

    Article  CAS  Google Scholar 

  17. Stavrakis, S., Humphrey, M. B., Scherlag, B. J., Hu, Y., Jackman, W. M., Nakagawa, H., Lockwood, D., Lazzara, R., & Po, S. S. (2015). Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. Journal of the American College of Cardiology, 65(9), 867–875.

    Article  Google Scholar 

  18. Yu, L., Huang, B., Po, S. S., Tan, T., Wang, M., Zhou, L., Meng, G., Yuan, S., Zhou, X., Li, X., Wang, Z., Wang, S., & Jiang, H. (2017). Low-level Tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC. Cardiovascular Interventions, 10(15), 1511–1520.

    Article  Google Scholar 

  19. Clancy, J. A., Mary, D. A., Witte, K. K., Greenwood, J. P., Deuchars, S. A., & Deuchars, J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimulation, 7(6), 871–877.

    Article  Google Scholar 

  20. Nagueh, S. F., Smiseth, O. A., Appleton, C. P., Byrd, B. F., 3rd, Dokainish, H., Edvardsen, T., Flachskampf, F. A., Gillebert, T. C., Klein, A. L., Lancellotti, P., Marino, P., Oh, J. K., Alexandru Popescu, B., Waggoner, A. D., Houston, T., Oslo, N., Phoenix, A., Nashville, T., Hamilton, O. C., Uppsala, S., Ghent, Liege, B., Cleveland, O., Novara, I., Rochester, M., Bucharest, R., & St. Louis, M. (2016). Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. European Heart Journal Cardiovascular Imaging, 17(12), 1321–1360.

    Article  Google Scholar 

  21. Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clinical Anatomy, 15(1), 35–37.

    Article  Google Scholar 

  22. Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV—heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220.

    Article  Google Scholar 

  23. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Circulation, 93(5) 1043–65.

  24. Laborde, S., Mosley, E., & Thayer, J. F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research—recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213.

    Article  Google Scholar 

  25. Freeman, R. (2006). Assessment of cardiovascular autonomic function. Clinical Neurophysiology, 117(4), 716–730.

    Article  Google Scholar 

  26. Mordi, I. R., Singh, S., Rudd, A., Srinivasan, J., Frenneaux, M., Tzemos, N., & Dawson, D. K. (2018). Comprehensive echocardiographic and cardiac magnetic resonance evaluation differentiates among heart failure with preserved ejection fraction patients, hypertensive patients, and healthy control subjects. JACC: Cardiovascular Imaging, 11(4), 577–585.

    PubMed  Google Scholar 

  27. Deuchars, S. A., Lall, V. K., Clancy, J., Mahadi, M., Murray, A., Peers, L., & Deuchars, J. (2018). Mechanisms underpinning sympathetic nervous activity and its modulation using transcutaneous vagus nerve stimulation. Experimental Physiology, 103(3), 326–331.

    Article  Google Scholar 

  28. Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., & Brown, A. M. (1973). A cardiocardiac sympathovagal reflex in the cat. Circulation Research, 32(2), 215–220.

    Article  CAS  Google Scholar 

  29. Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624–636.

    Article  Google Scholar 

  30. Grassi, G., Seravalle, G., Quarti-Trevano, F., Dell'Oro, R., Arenare, F., Spaziani, D., & Mancia, G. (2009). Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension, 53(2), 205–209.

    Article  CAS  Google Scholar 

  31. Toschi-Dias, E., Rondon, M., Cogliati, C., Paolocci, N., Tobaldini, E., & Montano, N. (2017). Contribution of autonomic reflexes to the hyperadrenergic state in heart failure. Frontiers in Neuroscience, 11, 162.

    Article  Google Scholar 

  32. Vasudevan, N. T., Mohan, M. L., Goswami, S. K., & Naga Prasad, S. V. (2011). Regulation of beta-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle, 10(21), 3684–3691.

    Article  CAS  Google Scholar 

  33. Ardell, J. L., Rajendran, P. S., Nier, H. A., KenKnight, B. H., & Armour, J. A. (2015). Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function. American Journal of Physiology. Heart and Circulatory Physiology, 309(10), H1740–H1752.

    Article  CAS  Google Scholar 

  34. Potter, E., & Marwick, T. H. (2018). Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC: Cardiovascular Imaging, 11(2 Pt 1), 260–274.

    PubMed  Google Scholar 

  35. Saito, M., Khan, F., Stoklosa, T., Iannaccone, A., Negishi, K., & Marwick, T. H. (2016). Prognostic implications of LV strain risk score in asymptomatic patients with hypertensive heart disease. JACC: Cardiovascular Imaging, 9(8), 911–921.

    PubMed  Google Scholar 

  36. Ho, S. Y. (2009). Anatomy and myoarchitecture of the left ventricular wall in normal and in disease. European Journal of Echocardiography, 10(8), iii3–iii7.

    Article  Google Scholar 

  37. Schroder, J., Hamada, S., Altiok, E., Almalla, M., Koutziampasi, C., Napp, A., Keszei, A., Hein, M., & Becker, M. (2017). Detection of acute changes in left ventricular function by myocardial deformation analysis after excessive alcohol ingestion. Journal of the American Society of Echocardiography, 30(3), 235–243 e1.

    Article  Google Scholar 

  38. Dedobbeleer, C., Hadefi, A., Naeije, R., & Unger, P. (2013). Left ventricular adaptation to acute hypoxia: a speckle-tracking echocardiography study. Journal of the American Society of Echocardiography, 26(7), 736–745.

    Article  Google Scholar 

  39. Sha, Y., Scherlag, B. J., Yu, L., Sheng, X., Jackman, W. M., Lazzara, R., & Po, S. S. (2011). Low-level right vagal stimulation: anticholinergic and antiadrenergic effects. Journal of Cardiovascular Electrophysiology, 22(10), 1147–1153.

    Article  Google Scholar 

  40. Chinda, K., Tsai, W. C., Chan, Y. H., Lin, A. Y., Patel, J., Zhao, Y., Tan, A. Y., Shen, M. J., Lin, H., Shen, C., Chattipakorn, N., Rubart-von der Lohe, M., Chen, L. S., Fishbein, M. C., Lin, S. F., Chen, Z., & Chen, P. S. (2016). Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs. Heart Rhythm, 13(3), 771–780.

    Article  Google Scholar 

  41. Tadic, M., Cuspidi, C., Pencic, B., Pavlovic, S. U., Ivanovic, B., Kocijancic, V., & Celic, V. (2015). Association between left ventricular mechanics and heart rate variability in untreated hypertensive patients. Journal of Clinical Hypertension (Greenwich, Conn.), 17(2), 118–125.

    Article  Google Scholar 

  42. Tadic, M., Zlatanovic, M., Cuspidi, C., Ivanovic, B., Stevanovic, A., Damjanov, N., Kocijancic, V., & Celic, V. (2017). The relationship between left ventricular deformation and heart rate variability in patients with systemic sclerosis: two- and three-dimensional strain analysis. International Journal of Cardiology, 236, 145–150.

    Article  Google Scholar 

  43. Gold, M. R., Van Veldhuisen, D. J., Hauptman, P. J., Borggrefe, M., Kubo, S. H., Lieberman, R. A., Milasinovic, G., Berman, B. J., Djordjevic, S., Neelagaru, S., Schwartz, P. J., Starling, R. C., & Mann, D. L. (2016). Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF Trial. Journal of the American College of Cardiology, 68(2), 149–158.

    Article  Google Scholar 

  44. Zannad, F., De Ferrari, G. M., Tuinenburg, A. E., Wright, D., Brugada, J., Butter, C., Klein, H., Stolen, C., Meyer, S., Stein, K. M., Ramuzat, A., Schubert, B., Daum, D., Neuzil, P., Botman, C., Castel, M. A., D'Onofrio, A., Solomon, S. D., Wold, N., & Ruble, S. B. (2015). Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial. European Heart Journal, 36(7), 425–433.

    Article  Google Scholar 

  45. Premchand, R. K., Sharma, K., Mittal, S., Monteiro, R., Dixit, S., Libbus, I., DiCarlo, L. A., Ardell, J. L., Rector, T. S., Amurthur, B., KenKnight, B. H., & Anand, I. S. (2014). Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. Journal of Cardiac Failure, 20(11), 808–816.

    Article  Google Scholar 

  46. Ardell, J. L., Nier, H., Hammer, M., Southerland, E. M., Ardell, C. L., Beaumont, E., KenKnight, B. H., & Armour, J. A. (2017). Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. The Journal of Physiology, 595(22), 6887–6903.

    Article  CAS  Google Scholar 

  47. Salavatian, S., Beaumont, E., Longpre, J. P., Armour, J. A., Vinet, A., Jacquemet, V., Shivkumar, K., & Ardell, J. L. (2016). Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation. American Journal of Physiology. Heart and Circulatory Physiology, 311(5), H1311–H1320.

    Article  Google Scholar 

  48. Koopman, F. A., Chavan, S. S., Miljko, S., Grazio, S., Sokolovic, S., Schuurman, P. R., Mehta, A. D., Levine, Y. A., Faltys, M., Zitnik, R., Tracey, K. J., & Tak, P. P. (2016). Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 8284–8289.

    Article  CAS  Google Scholar 

  49. Liu, J. H., Chen, Y., Yuen, M., Zhen, Z., Chan, C. W., Lam, K. S., Tse, H. F., & Yiu, K. H. (2016). Incremental prognostic value of global longitudinal strain in patients with type 2 diabetes mellitus. Cardiovascular Diabetology, 15, 22.

    Article  Google Scholar 

Download references

Funding

This study was funded by an Oklahoma Shared Clinical and Translational Resources pilot grant (NIGMS IDeA-CTR U54-GM104938) to Stavros Stavrakis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stavros Stavrakis.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human Subjects/Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Animal Studies

No animal studies were carried out by the authors for this article.

Additional information

Associate Editor Ana Barac oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, N., Asad, Z., Elkholey, K. et al. Autonomic Neuromodulation Acutely Ameliorates Left Ventricular Strain in Humans. J. of Cardiovasc. Trans. Res. 12, 221–230 (2019). https://doi.org/10.1007/s12265-018-9853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9853-6

Keywords

Navigation