Skip to main content

Advertisement

Log in

AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Lecithin:cholesterol acyltransferase (LCAT) is the key circulating enzyme responsible for high-density lipoprotein (HDL) cholesterol esterification, HDL maturation, and potentially reverse cholesterol transport. To further explore LCAT’s mechanism of action on lipoprotein metabolism, we employed adeno-associated viral vector (AAV) serotype 8 to achieve long-term (32-week) high level expression of human LCAT in hCETP;Ldlr+/− mice, and characterized the lipid profiles in detail. The mice had a marked increase in HDL cholesterol, HDL particle size, and significant reduction in low-density lipoprotein (LDL) cholesterol, plasma triglycerides, and plasma apoB. Plasma LCAT activity significantly increased with humanized substrate specificity. HDL cholesteryl esters increased in a fashion that fits human LCAT specificity. HDL phosphatidylcholines trended toward decrease, with no change observed for HDL lysophosphatidylcholines. Triglycerides reduction appeared to reside in all lipoprotein particles (very low-density lipoprotein (VLDL), LDL, and HDL), with HDL triglycerides composition highly reflective of VLDL, suggesting that changes in HDL triglycerides were primarily driven by the altered triglycerides metabolism in VLDL. In summary, in this human-like model for lipoprotein metabolism, AAV8-mediated overexpression of human LCAT resulted in profound changes in plasma lipid profiles. Detailed lipid analyses in the lipoprotein particles suggest that LCAT's beneficial effect on lipid metabolism includes not only enhanced HDL cholesterol esterification but also improved metabolism of apoB-containing particles and triglycerides. Our findings thus shed new light on LCAT’s mechanism of action and lend support to its therapeutic potential in treating dyslipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Osuga, T., & Portman, O. W. (1971). Origin and disappearance of plasma lecithin: cholesterol acyltransferase. American Journal of Physiology, 220, 735–741.

    PubMed  CAS  Google Scholar 

  2. Glomset, J. A. (1968). The plasma lecithins:cholesterol acyltransferase reaction. Journal of Lipid Research, 9, 155–167.

    PubMed  CAS  Google Scholar 

  3. Francone, O. L., Gurakar, A., & Fielding, C. (1989). Distribution and functions of lecithin:cholesterol acyltransferase and cholesteryl ester transfer protein in plasma lipoproteins. Evidence for a functional unit containing these activities together with apolipoproteins A-I and D that catalyzes the esterification and transfer of cell-derived cholesterol. Journal of Biological Chemistry, 264, 7066–7072.

    PubMed  CAS  Google Scholar 

  4. Rader, D. J., Ikewaki, K., Duverger, N., Schmidt, H., Pritchard, H., Frohlich, J., et al. (1994). Markedly accelerated catabolism of apolipoprotein A-II (ApoA-II) and high density lipoproteins containing ApoA-II in classic lecithin: cholesterol acyltransferase deficiency and fish-eye disease. The Journal of Clinical Investigation, 93, 321–330.

    Article  PubMed  CAS  Google Scholar 

  5. Fielding, C. J., & Fielding, P. E. (1995). Molecular physiology of reverse cholesterol transport. Journal of Lipid Research, 36, 211–228.

    PubMed  CAS  Google Scholar 

  6. Applebaum-Bowden, D. (1995). Lipases and lecithin: cholesterol acyltransferase in the control of lipoprotein metabolism. Current Opinion in Lipidology, 6, 130–135.

    Article  PubMed  CAS  Google Scholar 

  7. Dobiasova, M., & Frohlich, J. J. (1999). Advances in understanding of the role of lecithin cholesterol acyltransferase (LCAT) in cholesterol transport. Clinica Chimica Acta, 286, 257–271.

    Article  CAS  Google Scholar 

  8. Glomset, J. A. (1962). The mechanism of the plasma cholesterol esterification reaction: plasma fatty acid transferase. Biochimica et Biophysica Acta, 65, 128–135.

    Article  PubMed  CAS  Google Scholar 

  9. Kuivenhoven, J. A., Pritchard, H., Hill, J., Frohlich, J., Assmann, G., & Kastelein, J. (1997). The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. Journal of Lipid Research, 38, 191–205.

    PubMed  CAS  Google Scholar 

  10. Calabresi, L., Pisciotta, L., Costantin, A., Frigerio, I., Eberini, I., Alessandrini, P., et al. (2005). The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1972–1978.

    Article  PubMed  CAS  Google Scholar 

  11. Hovingh, G. K., Hutten, B. A., Holleboom, A. G., Petersen, W., Rol, P., Stalenhoef, A., et al. (2005). Compromised LCAT function is associated with increased atherosclerosis. Circulation, 112, 879–884.

    Article  PubMed  CAS  Google Scholar 

  12. Gjone, E. (1974). Familial lecithin:cholesterol acyltransferase deficiency—a clinical survey. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, 137, 73–82.

    PubMed  CAS  Google Scholar 

  13. Stokke, K. T., Bjerve, K. S., Blomhoff, J. P., Oystese, B., Flatmark, A., Norum, K. R., et al. (1974). Familial lecithin:cholesterol acyltransferase deficiency. Studies on lipid composition and morphology of tissues. Scandinavian Journal of Clinical and Laboratory Investigation. Supplementum, 137, 93–100.

    PubMed  CAS  Google Scholar 

  14. Homma, S., Murayama, N., Yoshida, I., Kusano, E., Kuriki, K., Saito, K., et al. (2001). Marked atherosclerosis in a patient with familiar lecithin: cholesterol acyltransferase deficiency associated with end-stage renal disease and diabetes mellitus. American Journal of Nephrology, 21, 415–419.

    Article  PubMed  CAS  Google Scholar 

  15. Funke, H., von Eckardstein, A., Pritchard, P. H., Hornby, A. E., Wiebusch, H., Motti, C., et al. (1993). Genetic and phenotypic heterogeneity in familial lecithin: cholesterol acyltransferase (LCAT) deficiency. Six newly identified defective alleles further contribute to the structural heterogeneity in this disease. The Journal of Clinical Investigation, 91, 677–683.

    Article  PubMed  CAS  Google Scholar 

  16. Lambert, G., Sakai, N., Vaisman, B. L., Neufeld, E. B., Marteyn, B., Chan, C. C., et al. (2001). Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. Journal of Biological Chemistry, 276, 15090–15098.

    Article  PubMed  CAS  Google Scholar 

  17. Berard, A. M., Foger, B., Remaley, A., Shamburek, R., Vaisman, B. L., Talley, G., et al. (1997). High plasma HDL concentrations associated with enhanced atherosclerosis in transgenic mice overexpressing lecithin-cholesteryl acyltransferase. Nature Medicine, 3, 744–749.

    Article  PubMed  CAS  Google Scholar 

  18. Foger, B., Chase, M., Amar, M. J., Vaisman, B. L., Shamburek, R. D., Paigen, B., et al. (1999). Cholesteryl ester transfer protein corrects dysfunctional high density lipoproteins and reduces aortic atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. Journal of Biological Chemistry, 274, 36912–36920.

    Article  PubMed  CAS  Google Scholar 

  19. Hoeg, J. M., Santamarina-Fojo, S., Berard, A. M., Cornhill, J. F., Herderick, E. E., Feldman, S. H., et al. (1996). Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 93, 11448–11453.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, A. H., Gao, S., Fan, J. L., Huang, W., Zhao, T. Q., & Liu, G. (2004). Increased plasma HDL cholesterol levels and biliary cholesterol excretion in hamster by LCAT overexpression. FEBS Letters, 570, 25–29.

    Article  PubMed  CAS  Google Scholar 

  21. Amar, M. J., Shamburek, R. D., Vaisman, B., Knapper, C. L., Foger, B., Hoyt, R. F., Jr., et al. (2009). Adenoviral expression of human lecithin-cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein. Metabolism, 58, 568–575.

    Article  PubMed  CAS  Google Scholar 

  22. Vandenberghe, L. H., Wilson, J. M., & Gao, G. (2009). Tailoring the AAV vector capsid for gene therapy. Gene Therapy, 16, 311–319.

    Article  PubMed  CAS  Google Scholar 

  23. Nakai, H., Fuess, S., Storm, T. A., Muramatsu, S., Nara, Y., & Kay, M. A. (2005). Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. Journal of Virology, 79, 214–224.

    Article  PubMed  CAS  Google Scholar 

  24. Inagaki, K., Fuess, S., Storm, T. A., Gibson, G. A., McTiernan, C. F., Kay, M. A., et al. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Molecular Therapy, 14, 45–53.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, Z., Zhu, T., Rehman, K. K., Bertera, S., Zhang, J., Chen, C., et al. (2006). Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes. Diabetes, 55, 875–884.

    Article  PubMed  CAS  Google Scholar 

  26. Gao, G., Lu, Y., Calcedo, R., Grant, R. L., Bell, P., Wang, L., et al. (2006). Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Molecular Therapy, 13, 77–87.

    Article  PubMed  CAS  Google Scholar 

  27. Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., & Wilson, J. M. (2002). Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 99, 11854–11859.

    Article  PubMed  CAS  Google Scholar 

  28. Chen, C. H., & Albers, J. J. (1982). Characterization of proteoliposomes containing apoprotein A-I: a new substrate for the measurement of lecithin: cholesterol acyltransferase activity. Journal of Lipid Research, 23, 680–691.

    PubMed  CAS  Google Scholar 

  29. Kobori, K., Saito, K., Ito, S., Kotani, K., Manabe, M., & Kanno, T. (2002). A new enzyme-linked immunosorbent assay with two monoclonal antibodies to specific epitopes measures human lecithin-cholesterol acyltransferase. Journal of Lipid Research, 43, 325–334.

    PubMed  CAS  Google Scholar 

  30. Albers, J. J., Chen, C. H., & Adolphson, J. L. (1981). Lecithin:cholesterol acyltransferase (LCAT) mass; its relationship to LCAT activity and cholesterol esterification rate. Journal of Lipid Research, 22, 1206–1213.

    PubMed  CAS  Google Scholar 

  31. Pahl, M. V., Ni, Z., Sepassi, L., Moradi, H., & Vaziri, N. D. (2009). Plasma phospholipid transfer protein, cholesteryl ester transfer protein and lecithin:cholesterol acyltransferase in end-stage renal disease (ESRD). Nephrology, Dialysis, Transplantation, 24, 2541–2546.

    Article  PubMed  CAS  Google Scholar 

  32. Grove, D., & Pownall, H. J. (1991). Comparative specificity of plasma lecithin:cholesterol acyltransferase from ten animal species. Lipids, 26, 416–420.

    Article  PubMed  CAS  Google Scholar 

  33. Liu, M., Bagdade, J. D., & Subbaiah, P. V. (1995). Specificity of lecithin:cholesterol acyltransferase and atherogenic risk: comparative studies on the plasma composition and in vitro synthesis of cholesteryl esters in 14 vertebrate species. Journal of Lipid Research, 36, 1813–1824.

    PubMed  CAS  Google Scholar 

  34. Kuksis, A., & Marai, L. (1967). Determination of the complete structure of natural lecithins. Lipids, 2, 217–224.

    Article  PubMed  CAS  Google Scholar 

  35. Adlof, R. (1991). Fractionation of egg and soybean phosphatidylcholines by silver resin chromatography. Journal of Chromatography, 538, 469–473.

    Article  PubMed  CAS  Google Scholar 

  36. Castelli, W. P., Doyle, J. T., Gordon, T., Hames, C. G., Hjortland, M. C., Hulley, S. B., et al. (1977). HDL cholesterol and other lipids in coronary heart disease. The cooperative lipoprotein phenotyping study. Circulation, 55, 767–772.

    PubMed  CAS  Google Scholar 

  37. Havel, R. J. (1979). High-density lipoproteins, cholesterol transport and coronary heart disease. Circulation, 60, 1–3.

    PubMed  CAS  Google Scholar 

  38. Assmann, G., & Gotto, A. M., Jr. (2004). HDL cholesterol and protective factors in atherosclerosis. Circulation, 109, III8–III14.

    Article  PubMed  Google Scholar 

  39. Nicholls, S. J., Tuzcu, E. M., Sipahi, I., Grasso, A. W., Schoenhagen, P., Hu, T., et al. (2007). Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. Jama., 297, 499–508.

    Article  PubMed  CAS  Google Scholar 

  40. Amar, M. E., Santamarina-Fojo, S., Brewer, H. B., Jr., & Hoeg, J. M. (1997). Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner. Metabolism, 38, 568–575.

    Google Scholar 

  41. Brousseau, M. E., Kauffman, R. D., Herderick, E. E., Demosky, S. J., Jr., Evans, W., Marcovina, S., et al. (2000). LCAT modulates atherogenic plasma lipoproteins and the extent of atherosclerosis in lecithin cholesterol acyltransferase transgenic mice. Journal of Biology, 20, 450–458.

    CAS  Google Scholar 

  42. Norum, K. R., Glomset, J. A., Nichols, A. V., & Forte, T. (1971). Plasma lipoproteins in familial lecithin: cholesterol acyltransferase deficiency: physical and chemical studies of low and high density lipoproteins. The Journal of Clinical Investigation, 50, 1131–1140.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Bo Wang and Christian Nunes for support of the tail vein injection, Beth Murphy for coordinating mice shipment, and Yong-hua Zhu for the pathology report.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Chen or Heather H. Zhou.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Chu, D., Castro-Perez, J.M. et al. AAV8-Mediated Long-Term Expression of Human LCAT Significantly Improves Lipid Profiles in hCETP;Ldlr+/− Mice. J. of Cardiovasc. Trans. Res. 4, 801–810 (2011). https://doi.org/10.1007/s12265-011-9309-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9309-8

Keywords

Navigation