Skip to main content
Log in

Hypertrophic Cardiomyopathy: Preclinical and Early Phenotype

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

An Erratum to this article was published on 19 June 2013

Abstract

Hypertrophic cardiomyopathy (HCM) is caused by dominant mutations in sarcomere genes. Although the diagnosis of HCM is traditionally based on identifying unexplained left ventricular hypertrophy (LVH) by cardiac imaging, LVH is not an invariable feature of disease. The expression of LVH is highly age-dependent, and LV wall thickness is typically normal during childhood. Overt cardiac hypertrophy often does not develop until adolescence or later. With genetic testing, family members who have inherited a pathogenic sarcomere mutation (G+) can be identified prior to a clinical diagnosis (LVH−). This allows characterization of a new and important subset, denoted preclinical HCM (G+/LVH−). Although there are no distinguishing morphologic features of early disease, there is evidence of myocardial dysfunction prior to the development of LVH. Otherwise healthy sarcomere mutation carriers frequently have subtle impairment of diastolic function, detectable by tissue Doppler interrogation. These findings can assist in differentiating such at-risk family members from those who did not inherit the mutation, despite the presence of normal LV wall thickness. In contrast, systolic function appears relatively preserved in preclinical HCM but impaired in overt disease, suggesting that both the sarcomere mutation and the characteristic changes in myocardial architecture (LVH, fibrosis, and disarray) are required to perturb force generation. Better characterization of preclinical HCM will identify the initial manifestations of sarcomere mutations, characterize intermediate disease phenotypes, and foster efforts to develop novel therapeutic strategies based on genetic identification of at-risk individuals and early initiation of therapy to prevent disease progression when treatment may be most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abraham, T. P., Dimaano, V. L., & Liang, H. Y. (2007). Role of tissue Doppler and strain echocardiography in current clinical practice. Circulation, 116, 2597–609.

    Article  PubMed  Google Scholar 

  2. Bellavia, D., Pellikka, P. A., Abraham, T. P., Al-Zahrani, G. B., Dispenzieri, A., Oh, J. K., et al. (2008). Evidence of impaired left ventricular systolic function by Doppler myocardial imaging in patients with systemic amyloidosis and no evidence of cardiac involvement by standard two-dimensional and Doppler echocardiography. American Journal of Cardiology, 101, 1039–1045.

    Article  PubMed  Google Scholar 

  3. Blanchard, E., Seidman, C., Seidman, J. G., LeWinter, M., & Maughan, D. (1999). Altered crossbridge kinetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Circulation Research, 84, 475–483.

    CAS  PubMed  Google Scholar 

  4. D'Hooge, J., Heimdal, A., Jamal, F., Kukulski, T., Bijnens, B., Rademakers, F., et al. (2000). Regional strain and strain rate measurements by cardiac ultrasound: Principles, implementation and limitations. European Journal of Echocardiography, 1, 154–170.

    Article  PubMed  Google Scholar 

  5. Debold, E. P., Schmitt, J. P., Patlak, J. B., Beck, S. E., Moore, J. R., Seidman, J. G., et al. (2007). Hypertrophic and dilated cardiomyopathy mutations differentially affect the molecular force generation of mouse alpha-cardiac myosin in the laser trap assay. American Journal of Physiology. Heart and Circulatory Physiology, 293, H284–H291.

    Article  CAS  PubMed  Google Scholar 

  6. Edvardsen, T., Gerber, B. L., Garot, J., Bluemke, D. A., Lima, J. A., & Smiseth, O. A. (2002). Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: Validation against three-dimensional tagged magnetic resonance imaging. Circulation, 106, 50–56.

    Article  PubMed  Google Scholar 

  7. Elliott, P., & McKenna, W. J. (2004). Hypertrophic cardiomyopathy. Lancet, 363, 1881–1891.

    Article  CAS  PubMed  Google Scholar 

  8. Fatkin, D., McConnell, B. K., Mudd, J. O., Semsarian, C., Moskowitz, I. G., Schoen, F. J., et al. (2000). An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 106, 1351–1359.

    Article  CAS  PubMed  Google Scholar 

  9. Geisterfer-Lowrance, A. A., Christe, M., Conner, D. A., Ingwall, J. S., Schoen, F. J., Seidman, C. E., et al. (1996). A mouse model of familial hypertrophic cardiomyopathy. Science, 272, 731–734.

    Article  CAS  PubMed  Google Scholar 

  10. Georgakopoulos, D., Christe, M. E., Giewat, M., Seidman, C. M., Seidman, J. G., & Kass, D. A. (1999). The pathogenesis of familial hypertrophic cardiomyopathy: Early and evolving effects from an alpha-cardiac myosin heavy chain missense mutation [see comments]. Nature Medicine, 5, 327–330.

    Article  CAS  PubMed  Google Scholar 

  11. Germans, T., Wilde, A. A., Dijkmans, P. A., Chai, W., Kamp, O., Pinto, Y. M., et al. (2006). Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. Journal of the American College of Cardiology, 48, 2518–2523.

    Article  PubMed  Google Scholar 

  12. Ho, C. Y., Carlsen, C., Thune, J. J., Havndrup, O., Bundgaard, H., Farrohi, F., et al. (2009). Echocardiographic strain imaging to assess early and late consequences of sarcomere mutations in hypertrophic cardiomyopathy. Circulation: Cardiovascular Genetics, 2, 314–321.

    Article  Google Scholar 

  13. Ho, C. Y., Sweitzer, N. K., McDonough, B., Maron, B. J., Casey, S. A., Seidman, J. G., et al. (2002). Assessment of diastolic function with Doppler tissue imaging to predict genotype in preclinical hypertrophic cardiomyopathy. Circulation, 105, 2992–2997.

    Article  PubMed  Google Scholar 

  14. Koyama, J., Ray-Sequin, P. A., & Falk, R. H. (2003). Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation, 107, 2446–2452.

    Article  PubMed  Google Scholar 

  15. Maron, B. J., Seidman, J. G., & Seidman, C. E. (2004). Proposal for contemporary screening strategies in families with hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 44, 2125–2132.

    Article  PubMed  Google Scholar 

  16. Mirsky, I., & Parmley, W. W. (1973). Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circulation Research, 33, 233–243.

    CAS  PubMed  Google Scholar 

  17. Moon, J. C., Mogensen, J., Elliott, P. M., Smith, G. C., Elkington, A. G., Prasad, S. K., et al. (2005). Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart, 91, 1036–1040.

    Article  CAS  PubMed  Google Scholar 

  18. Nagueh, S. F., Bachinski, L. L., Meyer, D., Hill, R., Zoghbi, W. A., Tam, J. W., et al. (2001). Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation, 104, 128–130.

    CAS  PubMed  Google Scholar 

  19. Nagueh, S. F., Kopelen, H. A., Lim, D. S., Zoghbi, W. A., Quinones, M. A., Roberts, R., et al. (2000). Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation, 102, 1346–1350.

    CAS  PubMed  Google Scholar 

  20. Niimura, H., Bachinski, L. L., Sangwatanaroj, S., Watkins, H., Chudley, A. E., McKenna, W., et al. (1998). Mutations in the gene for cardiac myosin-binding protein C and late- onset familial hypertrophic cardiomyopathy [see comments]. New England Journal of Medicine, 338, 1248–1257.

    Article  CAS  PubMed  Google Scholar 

  21. Richard, P., Villard, E., Charron, P., & Isnard, R. (2006). The genetic bases of cardiomyopathies. Journal of the American College of Cardiology, 48, A79–A89.

    Article  CAS  Google Scholar 

  22. Seidman, J. G., & Seidman, C. (2001). The genetic basis for cardiomyopathy: From mutation identification to mechanistic paradigms. Cell, 104, 557–567.

    Article  CAS  PubMed  Google Scholar 

  23. Semsarian, C., Ahmad, I., Giewat, M., Georgakopoulos, D., Schmitt, J. P., McConnell, B. K., et al. (2002). The L-type calcium channel inhibitor diltiazem prevents cardiomyopathy in a mouse model. Journal of Clinical Investigation, 109, 1013–1020.

    CAS  PubMed  Google Scholar 

  24. Serri, K., Reant, P., Lafitte, M., Berhouet, M., Le Bouffos, V., Roudaut, R., et al. (2006). Global and regional myocardial function quantification by two-dimensional strain: Application in hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 47, 1175–1181.

    Article  PubMed  Google Scholar 

  25. Spindler, M., Saupe, K. W., Christe, M. E., Sweeney, H. L., Seidman, C. E., Seidman, J. G., et al. (1998). Diastolic dysfunction and altered energetics in the alphaMHC403/+ mouse model of familial hypertrophic cardiomyopathy. Journal of Clinical Investigation, 101, 1775–1783.

    Article  CAS  PubMed  Google Scholar 

  26. Strijack, B., Ariyarajah, V., Soni, R., Jassal, D. S., Greenberg, C. R., McGregor, R., et al. (2008). Late gadolinium enhancement cardiovascular magnetic resonance in genotyped hypertrophic cardiomyopathy with normal phenotype. Journal of Cardiovascular Magnetic Resonance, 10, 58.

    Article  PubMed  Google Scholar 

  27. Sutherland, G. R., Di Salvo, G., Claus, P., D'Hooge, J., & Bijnens, B. (2004). Strain and strain rate imaging: A new clinical approach to quantifying regional myocardial function. Journal of the American Society of Echocardiography, 17, 788–802.

    Article  PubMed  Google Scholar 

  28. Tardiff, J. C. (2005). Sarcomeric proteins and familial hypertrophic cardiomyopathy: Linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Failure Reviews, 10, 237–248.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Y. Ho.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12265-013-9484-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, C.Y. Hypertrophic Cardiomyopathy: Preclinical and Early Phenotype. J. of Cardiovasc. Trans. Res. 2, 462–470 (2009). https://doi.org/10.1007/s12265-009-9124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9124-7

Keywords

Navigation