Skip to main content
Log in

Resting-state fMRI studies in epilepsy

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Epilepsy is a disease characterized by abnormal spontaneous activity in the brain. Resting-state functional magnetic resonance imaging (RS-fMRI) is a powerful technique for exploring this activity. With good spatial and temporal resolution, RS-fMRI is a promising approach for accurate localization of the focus of seizure activity. Although simultaneous electroencephalogram-fMRI has been performed with patients in the resting state, most studies focused on activation. This mini-review focuses on RS-fMRI alone, including its computational methods and its application to epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gotman J. Epileptic networks studied with EEG-fMRI. Epilepsia 2008, 49: S42–51.

    Article  Google Scholar 

  2. Noachtar S, Rémi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav 2009, 15: 22–33.

    Article  PubMed  Google Scholar 

  3. la Fougère C, Rominger A, Förster S, Geisler J, Bartenstein P. PET and SPECT in epilepsy: a critical review. Epilepsy Behav 2009, 15: 50–55.

    Article  PubMed  Google Scholar 

  4. Rowe CC, Berkovic SF, Austin MC, Saling M, Kalnins RM, Mc-Kay WJ, et al. Visual and quantitative analysis of interictal SPECT with technetium-99m-HMPAO in temporal lobe epilepsy. J Nucl Med 1991, 32: 1688–1694.

    PubMed  CAS  Google Scholar 

  5. Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol 1997, 42: 622–631.

    Article  PubMed  CAS  Google Scholar 

  6. Yagyu K, Takeuchi F, Shiraishi H, Nakane S, Sueda K, Asahina N, et al. The applications of time-frequency analyses to ictal magnetoencephalography in neocortical epilepsy. Epilepsy Res 2010, 90: 199–206.

    Article  PubMed  Google Scholar 

  7. Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echoplanar MRI. Magn Reson Med 1995, 34: 537–541.

    Article  PubMed  CAS  Google Scholar 

  8. Wolf RL, Alsop DC, Levy-Reis I, Meyer PT, Maldjian JA, Gonzalez-Atavales J, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 2001, 22: 1334–1341.

    PubMed  CAS  Google Scholar 

  9. Chuang KH, van Gelderen P, Merkle H, Bodurka J, Ikonomidou VN, Koretsky AP, et al. Mapping resting-state functional connectivity using perfusion MRI. Neuroimage 2008, 40: 1595–1605.

    Article  PubMed  Google Scholar 

  10. Zou Q, Wu CW, Stein EA, Zang Y, Yang Y. Static and dynamic characteristics of cerebral blood flow during the resting state. Neuroimage 2009, 48: 515–524.

    Article  PubMed  Google Scholar 

  11. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998, 7: 119–132.

    Article  PubMed  CAS  Google Scholar 

  12. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 2001, 22: 1326–1333.

    PubMed  CAS  Google Scholar 

  13. Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A 2006, 103: 10046–10051.

    Article  PubMed  CAS  Google Scholar 

  14. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 2002, 15: 247–262.

    Article  PubMed  Google Scholar 

  15. Koyama MS, Kelly C, Shehzad Z, Penesetti D, Castellanos FX, Milham MP. Reading networks at rest. Cereb Cortex 2010, 20: 2549–2559.

    Article  PubMed  Google Scholar 

  16. Vincent JL, Snyder AZ, Fox MD, Shannon BJ, Andrews JR, Raichle ME, et al. Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 2006, 96: 3517–3531.

    Article  PubMed  Google Scholar 

  17. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 2003, 100: 253–258.

    Article  PubMed  CAS  Google Scholar 

  18. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005, 102: 9673–9678.

    Article  PubMed  CAS  Google Scholar 

  19. Wu QZ, Li DM, Kuang WH, Zhang TJ, Lui S, Huang XQ, et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp 2011, 32: 1290–1299.

    Article  PubMed  Google Scholar 

  20. Rombouts SA, Barkhof F, Goekoop R, Stam CJ, Scheltens P. Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 2005, 26: 231–239.

    Article  PubMed  Google Scholar 

  21. Cao Q, Zang Y, Sun L, Sui M, Long X, Zou Q, et al. Abnormal neural activity in children with attention deficit hyperactivity disorder: a resting-state functional magnetic resonance imaging study. Neuroreport 2006, 17:1033–1036.

    Article  PubMed  Google Scholar 

  22. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann Neurol 2006, 59: 335–343.

    Article  PubMed  Google Scholar 

  23. Gotman J, Kobayashi E, Bagshaw AP, Bénar CG, Dubeau F. Combining EEG and fMRI: a multimodal tool for epilepsy research. J Magn Reson Imaging 2006, 23: 906–920.

    Article  PubMed  Google Scholar 

  24. Lazeyras F, Blanke O, Perrig S, Zimine I, Golay X, Delavelle J, et al. EEG-triggered functional MRI in patients with pharmacoresistant epilepsy. J Magn Reson Imaging 2000, 12: 177–185.

    Article  PubMed  CAS  Google Scholar 

  25. Archer JS, Abbott DF, Waites AB, Jackson GD. fMRI “deactivation” of the posterior cingulate during generalized spike and wave. Neuroimage 2003, 20: 1915–1922.

    Article  PubMed  Google Scholar 

  26. Aghakhani Y, Bagshaw AP, Bénar CG, Hawco C, Andermann F, Dubeau F, et al. fMRI activation during spike and wave discharges in idiopathic generalized epilepsy. Brain 2004, 127: 1127–1144.

    Article  PubMed  CAS  Google Scholar 

  27. Lopes R, Lina JM, Fahoum F, Gotman J. Detection of epileptic activity in fMRI without recording the EEG. Neuroimage 2012, 60: 1867–1879.

    Article  PubMed  CAS  Google Scholar 

  28. Liu Y, Gao JH, Liu HL, Fox PT. The temporal response of the brain after eating revealed by functional MRI. Nature 2000, 405: 1058–1062.

    Article  PubMed  CAS  Google Scholar 

  29. Morgan VL, Price RR, Arain A, Modur P, Abou-Khalil B. Resting functional MRI with temporal clustering analysis for localization of epileptic activity without EEG. Neuroimage 2004, 21: 473–481.

    Article  PubMed  Google Scholar 

  30. Morgan VL, Gore JC, Abou-Khalil B. Cluster analysis detection of functional MRI activity in temporal lobe epilepsy. Epilepsy Res 2007, 76: 22–33.

    Article  PubMed  Google Scholar 

  31. Morgan VL, Li Y, Abou-Khalil B, Gore JC. Development of 2dTCA for the detection of irregular, transient BOLD activity. Hum Brain Mapp 2008, 29: 57–69.

    Article  PubMed  Google Scholar 

  32. Khatamian YB, Fahoum F, Gotman J. Limits of 2D-TCA in detecting BOLD responses to epileptic activity. Epilepsy Res 2012, in press.

  33. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage 2004, 22: 394–400.

    Article  PubMed  Google Scholar 

  34. Yao Z, Wang L, Lu Q, Liu H, Teng G. Regional homogeneity in depression and its relationship with separate depressive symptom clusters: A resting-state fMRI study. J Affect Disord 2009, 115: 430–438.

    Article  PubMed  Google Scholar 

  35. Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, et al. Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 2009, 30: 1502–1510.

    Article  PubMed  Google Scholar 

  36. He Y, Wang L, Zang Y, Tian L, Zhang X, Li K, et al. Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. Neuroimage 2007, 35: 488–500.

    Article  PubMed  Google Scholar 

  37. Paakki JJ, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, et al. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res 2010, 1321: 169–179.

    Article  PubMed  CAS  Google Scholar 

  38. Shukla DK, Keehn B, Müller RA. Regional homogeneity of fMRI time series in autism spectrum disorders. Neurosci Lett 2010, 476: 46–51.

    Article  PubMed  CAS  Google Scholar 

  39. Mankinen K, Long XY, Paakki JJ, Harila M, Rytky S, Tervonen O, et al. Alterations in regional homogeneity of baseline brain activity in pediatric temporal lobe epilepsy. Brain Res 2011, 1373: 221–229.

    Article  PubMed  CAS  Google Scholar 

  40. Zhong Y, Lu G, Zhang Z, Jiao Q, Li K, Liu Y. Altered regional synchronization in epileptic patients with generalized tonic-clonic seizures. Epilepsy Res 2011, 97: 83–91.

    Article  PubMed  Google Scholar 

  41. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, Liang M, et al. Altered baseline brain activity in children with ADHD revealed by restingstate functional MRI. Brain Dev 2007, 29:83–91.

    Article  PubMed  Google Scholar 

  42. Yang H, Long XY, Yang Y, Yan H, Zhu CZ, Zhou XP, et al. Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. Neuroimage 2007, 36: 144–152.

    Article  PubMed  Google Scholar 

  43. Yan C, Liu D, He Y, Zou Q, Zhu C, Zuo X, et al. Spontaneous brain activity in the default mode network is sensitive to different restingstate conditions with limited cognitive load. PLoS One 2009, 4: e5743.

    Article  PubMed  Google Scholar 

  44. Mennes M, Zuo XN, Kelly C, Di Martino A, Zang YF, Biswal B, et al. Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. Neuroimage 2011, 54: 2950–2959.

    Article  PubMed  Google Scholar 

  45. Lui S, Huang X, Chen L, Tang H, Zhang T, Li X, et al. High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proc Natl Acad Sci U S A 2009, 106: 15412–15417.

    Article  PubMed  CAS  Google Scholar 

  46. Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, et al. Frequencydependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. Neuroimage 2011, 55: 287–295.

    Article  PubMed  Google Scholar 

  47. Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D’Angelo D, Mauro CJ, et al. Amplitude of low-frequency oscillations in schizophrenia: A resting state fMRI study. Schizophr Res 2010, 117: 13–20.

    Article  PubMed  Google Scholar 

  48. Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H, et al. Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry 2010, 67: 783–792.

    Article  PubMed  Google Scholar 

  49. Zhang Z, Lu G, Zhong Y, Tan Q, Chen H, Liao W, et al. fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum Brain Mapp 2010, 31: 1851–1861.

    Article  PubMed  Google Scholar 

  50. Bettus G, Guedj E, Joyeux F, Confort-Gouny S, Soulier E, Laguitton V, et al. Decreased basal fMRI functional connectivity in epileptogenic networks and contralateral compensatory mechanisms. Hum Brain Mapp 2008, 30: 1580–1591.

    Article  Google Scholar 

  51. Pereira FR, Alessio A, Sercheli MS, Pedro T, Bilevicius E, Rondina JM, et al. Asymmetrical hippocampal connectivity in mesial temporal lobe epilepsy: evidence from resting state fMRI. BMC Neurosci 2010, 11: 66.

    Article  PubMed  Google Scholar 

  52. Negishi M, Martuzzi R, Novotny EJ, Spencer DD, Constable RT. Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 2011, 52: 1733–1740.

    Article  PubMed  Google Scholar 

  53. Zhang Z, Lu G, Zhong Y, Tan Q, Yang Z, Liao W, et al. Impaired attention network in temporal lobe epilepsy: a resting fMRI study. Neurosci Lett 2009, 458: 97–101.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Chen Z, et al. Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. J Neurol 2009, 256: 1705–1713.

    Article  PubMed  Google Scholar 

  55. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Default mode network abnormalities in mesial temporal lobe epilepsy: a study combining fMRI and DTI. Hum Brain Mapp 2011, 32: 883–895.

    Article  PubMed  Google Scholar 

  56. McGill ML, Devinsky O, Kelly C, Milham M, Castellanos FX, Quinn BT, et al. Default mode network abnormalities in idiopathic generalized epilepsy. Epilepsy Behav 2012, 23: 353–359.

    Article  PubMed  Google Scholar 

  57. Masterton RA, Carney PW, Jackson GD. Cortical and thalamic resting-state functional connectivity is altered in childhood absence epilepsy. Epilepsy Res 2012, 99: 327–334.

    Article  PubMed  Google Scholar 

  58. Moeller F, Maneshi M, Pittau F, Gholipour T, Bellec P, Dubeau F, et al. Functional connectivity in patients with idiopathic generalized epilepsy. Epilepsia 2011, 52: 515–522.

    Article  PubMed  Google Scholar 

  59. Kang J, Wang L, Yan C, Wang J, Liang X, He Y. Characterizing dynamic functional connectivity in the resting brain using variable parameter regression and Kalman filtering approaches. Neuroimage 2011, 56: 1222–1234.

    Article  PubMed  Google Scholar 

  60. Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscientist 2012. [Epub ahead of print]

  61. Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, et al. Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One 2010, 5: e8525.

    Article  PubMed  Google Scholar 

  62. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, et al. Altered functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 2011, 134: 2912–2928.

    Article  PubMed  Google Scholar 

  63. Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage 2005, 25: 230–242.

    Article  PubMed  Google Scholar 

  64. David O, Guillemain I, Saillet S, Reyt S, Deransart C, Segebarth C, et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol 2008, 6: e315.

    Article  Google Scholar 

  65. Zang ZX, Yan CG, Dong ZY, Huang J, Zang YF. Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. J Neurosci Methods 2012, 203: 418–426.

    Article  PubMed  Google Scholar 

  66. Morgan VL, Rogers BP, Sonmezturk HH, Gore JC, Abou-Khalil B. Cross hippocampal influence in mesial temporal lobe epilepsy measured with high temporal resolution functional magnetic resonance imaging. Epilepsia 2011, 52: 1741–1749.

    Article  PubMed  Google Scholar 

  67. Windischberger C, Cunnington R, Lamm C, Lanzenberger R, Langenberger H, Deecke L, et al. Time-resolved analysis of fMRI signal changes using brain activation movies. J Neurosci Methods 2008, 169: 222–230.

    Article  PubMed  Google Scholar 

  68. LeVan P, Tyvaert L, Moeller F, Gotman J. Independent component analysis reveals dynamic ictal BOLD responses in EEG-fMRI data from focal epilepsy patients. Neuroimage 2010, 49: 366–378.

    Article  PubMed  Google Scholar 

  69. Zhang Z, Lu G, Zhong Y, Tan Q, Liao W, Wang Z, et al. Altered spontaneous neuronal activity of the default-mode network in mesial temporal lobe epilepsy. Brain Res 2010, 1323: 152–160.

    Article  PubMed  CAS  Google Scholar 

  70. Luo C, Qiu C, Guo Z, Fang J, Li Q, Lei X, et al. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study. PLoS One 2011, 7: e28196.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Feng Zang or Shi-Gang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wurina, Zang, YF. & Zhao, SG. Resting-state fMRI studies in epilepsy. Neurosci. Bull. 28, 449–455 (2012). https://doi.org/10.1007/s12264-012-1255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-012-1255-1

Keywords

Navigation