Skip to main content
Log in

Development of Biosensor for 3-Hydroxypropionic Acid

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, whole-cell biosensors that detect and indicate the concentration of 3-hydroxypropionic acid (3-HP) by producing a green fluorescent signal were developed using a transcription factor (TF)-responsive 3-HP inducible promoter identified in the Pseudomonas denitrificans 3-HP degradation pathway. Upon forming a complex with 3-HP, the MmsR TF protein, a LysR-type transcriptional regulator (LTTR), binds to the PmmsA promoter and controls the expression of the PmmsA-regulated gfp reporter gene in response to the concentration of 3-HP. Furthermore, by enhancing the expression of MmsR and through mutagenesis of the PmmsA promoter region, three well-performing biosensors were developed that covered a wide dynamic range of 3-HP (0.01-100 mM when added externally) with ~100-fold signal change upon induction in P. denitrificans. The 3-HP biosensor machinery, composed of MmsR, the PmmsA promoter and gfp could also function well in E. coli and P. putida. The developed 3-HP biosensors should be useful for engineering 3-HP-producing strains and the enzymes associated with its production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ongley, S. E., X. Bian, B. A. Neilan, and R. Müller (2013) Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat. Prod. Rep. 30: 1121–1138.

    Article  CAS  PubMed  Google Scholar 

  2. Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263–283.

    Article  CAS  PubMed  Google Scholar 

  3. Chae, C. G., Y. J. Kim, S. J. Lee, Y. H. Oh, J. E. Yang, J. C. Joo, K. H. Kang, Y. Jang, H. Lee, A. Park, B. K. Song, S. Y. Lee, and S. J. Park (2016) Biosynthesis of poly(2-hydroxybutyrate-colactate) in metabolically engineered Escherichia coli. Biotechnol. Bioproc. Eng. 21: 169–174.

    Article  CAS  Google Scholar 

  4. Li, M., J. Wang, Y. Geng, Y. Li, Q. Wang, Q. Liang, and Q. Qi (2012) A strategy of gene overexpression based on tandem repetitive promoters in Escherichia coli. Microb. Cell Fact. 11: 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheong, D. E., K. C. Ko, Y. Han, H. G. Jeon, B. H. Sung, G. J. Kim, and J. J. Song (2015) Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5'coding region. Biotechnol. Bioeng. 112: 822–826.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Y. D., C. Xue, L. J. Chen, W. J. Yuan, and F. W. Bai (2016) Improvements of metabolites tolerance in Clostridium acetobutylicum by micronutrient zinc supplementation. Biotechnol. Bioproc. Eng. 21: 60–67.

    Article  CAS  Google Scholar 

  7. Scott, W. G., M. Martick, and Y. I. Chi (2009) Structure and function of regulatory RNA elements: ribozymes that regulate gene expression. Biochim. Biophys. Acta 1789: 634–641.

  8. Dietrich, J. A., A. E. McKee, and J. D. Keasling (2010) Highthroughput metabolic engineering: advances in small-molecule screening and selection. Annu. Rev. Biochem. 79: 563–90.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, F. and J. Keasling (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19: 323–9.

    Article  CAS  PubMed  Google Scholar 

  10. Eggeling, L., M. Bott, and J. Marienhagen (2015) Novel screening methods--biosensors. Curr. Opin. Biotechnol. 35: 30–6.

    Article  CAS  PubMed  Google Scholar 

  11. Justino, C. I. L., I. D. A. C. Duarte, and T. A. P. Rocha-Santos (2017) Recent progress in biosensors for environmental monitoring: A review. Sensors 17: 2918.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lippincott-Schwartz, J. and G. H. Patterson (2003) Development and use of fluorescent protein markers in living cells. Science 300: 87–91.

    Article  CAS  PubMed  Google Scholar 

  13. Shaner, N. C., P. A. Steinbach, and R. Y. Tsien (2005) A guide to choosing fluorescent proteins. Nat. Methods 2: 905–909.

    Article  CAS  PubMed  Google Scholar 

  14. Tsien, R. Y. (2005) Breeding and building molecules to spy on cells and tumors. FEBS Lett. 579: 927–932.

    Article  CAS  PubMed  Google Scholar 

  15. Giepmans, B. N., S. R. Adams, M. H. Ellisman, and R. Y. Tsien (2006) The fluorescent toolbox for assessing protein location and function. Science 312: 217–224.

    Article  CAS  PubMed  Google Scholar 

  16. Ibraheem, A. and R. E. Campbell (2010) Designs and applications of fluorescent protein-based biosensors. Curr. Opin. Chem. Biol. 14: 30–36.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng, F., X. L. Tang, and T. Kardashliev (2018) Transcription factor-based biosensors in high-throughput screening: advances and applications. Biotechnol. J. 13: e1700648

    Article  Google Scholar 

  18. Liu, Y., Y. Liu, and M. Wang (2017) Design, optimization and application of small molecule biosensor in metabolic engineering. Front. Microbiol. 8: 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar, V., S. Ashok, and S. Park (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31: 945–961.

    Article  CAS  PubMed  Google Scholar 

  20. Raj, S. M., C. Rathnasingh, J. Jo, and S. Park (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem. 43: 1440–1446.

    Article  CAS  Google Scholar 

  21. Ko, Y., S. Ashok, E. Seol, S. Ainala, and S. Park (2015) Deletion of putative oxidoreductases from Klebsiella pneumoniae J2B could reduce 1,3-propanediol during the production of 3-hydroxypropionic acid from glycerol. Biotechnol. Bioproc. Eng. 20: 834–843.

    Article  CAS  Google Scholar 

  22. Zhou, S., C. Catherine, C. Rathnasingh, A. Somasundar, and S. Park (2013) Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans. Biotechnol. Bioeng. 110: 3177–3187.

    Article  CAS  PubMed  Google Scholar 

  23. Rogers, J. K. and G. M. Church (2016) Genetically encoded sensors enable real-time observation of metabolite production. Proc. Natl. Acad. Sci. USA 113: 2388–2393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou, S., S. K. Ainala, E. Seol, T. T. Nguyen, and S. Park (2015) Inducible gene expression system by 3-hydroxypropionic acid. Biotechnol. Biofuels 8:169.

    Google Scholar 

  25. Zhou, S., M. S. Raj, S. Ashok, S. Edwardraja, S. G. Lee, and S. Park (2013) Cloning, expression and characterization of 3-hydroxyisobytyrate dehydrogenase from Pseudomonas denitrificans ATCC 13867. PLoS One 8: e62666.

    Article  Google Scholar 

  26. Zhang, F. and J. Keasling (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 19: 323–329.

    Article  CAS  PubMed  Google Scholar 

  27. Yim, S. H., T. M. Kim, H. J. Hu, J. H. Kim, B. J. Kim, J. Y. Lee, B. G. Han, S. H. Shin, S. H. Jung, and Y. J. Chung (2009) Copy number variations in East-Asian population and their evolutionary and functional implications. Hum. Mol. Gen. ddp564.

    Google Scholar 

  28. Rhee, K. Y., D. F. Senear, and G. W. Hatfield (1998) Activation of gene expression by a ligand-induced conformational change of a protein-DNA complex. J. Biol. Chem. 273: 11257–11266.

    Article  CAS  PubMed  Google Scholar 

  29. Wek, R. C. and G. W. Hatfield (1988) Transcriptional activation at adjacent operators in the divergent-overlapping ilvY and ilvC promoters of Escherichia coli. J. Mol. Biol. 203: 643–663.

    Article  CAS  PubMed  Google Scholar 

  30. Hanko, E. K. R. H., N. P. Minton, and N. Malys (2017) Characterisation of a 3-hydroxypropionic acid-inducible system from Pseudomonas putida for orthogonal gene expression control in Escherichia coli and Cupriavidus necator. Sci. Rep. 7: 1724.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Porrúa, O., A. I. Platero, E. Santero, S. G. Del, and F. Govantes (2010) Complex interplay between the LysR-type regulator AtzR and its binding site mediates atzDEF activation in response to two distinct signals. Mol. Microbiol. 76: 331–347.

    Article  PubMed  Google Scholar 

  32. Galán, B., A. Kolb, J. M. Sanz, J. L. García, and M. A. Prieto (2003) Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res. 31: 6598–6609.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee, S. K. and J. D. Keasling (2005) A propionate-inducible expression system for enteric bacteria. Appl. Environ. Microbiol. 71: 6856–6862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghoon Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.H., Kim, JR. & Park, S. Development of Biosensor for 3-Hydroxypropionic Acid. Biotechnol Bioproc E 24, 109–118 (2019). https://doi.org/10.1007/s12257-018-0380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0380-8

Keywords

Navigation