Skip to main content
Log in

Effects of gltA and arcA Mutations on Biomass and 1,3-Propanediol Production in Klebsiella pneumoniae

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2023

This article has been updated

Abstract

We have previously engineered a Klebsiella pneumoniae strain to increase the 1,3-production (1,3-PDO) yield from glycerol. Here, we describe the further engineering of this strain to improve the biomass formation, resulting in an increase in the 1,3-PDO production. The amino acid lysine at the 167th position in citrate synthase was substituted with alanine using genome editing method to reduce the binding affinity of the enzyme to nicotinamide adenine dinucleotide (NADH). In addition, the arcA gene was deleted that resulted in the inhibition of the expression of citric acid cycle genes under limited aeration conditions. As a consequence, the biomass production was enhanced by 34% and 1,3-PDO formation was elevated from 9.58 to 16.71 g/L. The production of 1,3-PDO per dry cell weight enhanced by 30% from 2.40 to 3.11 g·L−1·DCW−1. The phenotypic changes in the strains were confirmed through the analyses of redox ratio, ATP levels, and changes in the expression of genes related to citric acid cycle and 1,3-PDO pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Yang, F. X., M. A. Hanna, and R. C. Sun (2012) Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnol. Biofuel. 5: 13.

    Article  CAS  Google Scholar 

  2. Lee, C. S., M. K. Aroua, W. M. A. W. Daud, P. Cognet, Y. Peres-Lucchese, P. L. Fabre, O. Reynes, and L. Latapie (2015) A review: Conversion of bioglycerol into 1,3-propanediol via biological and chemical method. Renew. Sust. Energ. Rev. 42: 963–972.

    Article  CAS  Google Scholar 

  3. Biebl, H., K. Menzel, A. P. Zeng, and W. D. Deckwer (1999) Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol. 52: 289–297.

    Article  CAS  PubMed  Google Scholar 

  4. Anand, P., R. K. Saxena, and R. G. Marwah (2011) A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Appl. Microbiol. Biotechnol. 90: 1267–1276.

    Article  CAS  PubMed  Google Scholar 

  5. Saxena, R. K., P. Anand, S. Saran, and J. Isar (2009) Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol. Adv. 27: 895–913.

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, W., S. Wang, Y. Wang, and B. Fang (2016) Key enzymes catalyzing glycerol to 1,3-propanediol. Biotechnol. Biofuel. 9: 57.

    Article  Google Scholar 

  7. Li, Z., S. M. Ro, B. S. Sekar, E. Seol, S. Lama, S. G. Lee, G. Wang, and S. Park (2016) Improvement of 1,3-propanediol oxidoreductase (DhaT) stability against 3-hydroxypropionaldehyde by substitution of cysteine residues. Biotechnol. Bioprocess Eng. 21: 695–703.

    Article  CAS  Google Scholar 

  8. Lama, S., S. M. Ro, E. Seol, B. S. Sekar, S. K. Ainala, J. Thangappan, H. Song, S. Seung, and S. Park (2015) Characterization of 1,3-propanediol oxidoreductase (DhaT) from Klebsiella pneumoniae J2B. Biotechnol. Bioprocess Eng. 20: 971–979.

    Article  CAS  Google Scholar 

  9. Oh, B. R., S. M. Lee, S. Y. Heo, J. W. Seo, and C. H. Kim (2018) Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Microbial Cell Fact. 17: 92.

    Article  Google Scholar 

  10. Lee J. H., M. Y. Jung, and M. K. Oh (2018) High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. Biotechnol. Biofuel. 11: 104

    Article  Google Scholar 

  11. Huang, H., C. S. Gong, and G. T. Tsao (2002) Production of 1,3-propanediol by Klebsiella pneumoniae. Appl. Biochem. Biotechnol. 98–100: 687–698.

    Article  Google Scholar 

  12. Chen, X., Z. Xiu, J. Wang, D. Zhang, and P. Xu (2003) Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaeriboic conditions. Enzyme Microb. Technol. 33: 386–394.

    Article  CAS  Google Scholar 

  13. Cheng, K. K., J. A. Zhang, D. H. Liu, Y. Sun, H. J. Liu, M. D. Yang, and J. M. Xu (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Proc. Biochem. 42: 740–744.

    Article  CAS  Google Scholar 

  14. Zong, H., X. Liu, W. Chen, B. Zhuge, and J. Sun (2017) Construction of glycerol synthesis pathway in Klebsiella pneumoniae for bioconversion of glucose into 1,3-propanediol. Biotechnol. Bioprocess Eng. 22: 549–555.

    Article  CAS  Google Scholar 

  15. Ma, B. B., X. L. Xu, G. L. Zhang, L. W. Wang, M. Wu (2009) Microbial production of 1,3-propanediol by Klebsiella pneumoniae XJPD-Li under different aeration strategies. Appl. Biochem. Biotechnol. 152:127–134.

    Google Scholar 

  16. Soetaert, W. and E. J. Vandamme (2010) Industrial biotechnology: sustainable growth and economic success. Wiley-VCH, Weinheim.

    Book  Google Scholar 

  17. Lu, X. Y., S. L. Ren, J. Z. Lu, H. Zong, J. Song, and B. Zhuge (2018) Enhanced 1,3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect. J. Appl. Microbiol. 124: 682–690.

    Article  CAS  PubMed  Google Scholar 

  18. Maurus, R., N. T. Nguyen, D. J. Stokell, A. Ayed, P. G. Hultin, H. W. Duckworth, and G. D. Brayer (2003) Insights into the evolution of allosteric properties. The NADH binding site of hexameric type II citrate synthases. Biochemistry 42: 5555–5565.

    CAS  PubMed  Google Scholar 

  19. Stokell, D. J., L. J. Donald, R. Maurus, N. T. Nguyen, G. Sadler, K. Choudhary, P. G. Hultin, G. D. Brayer, and H. W. Duckworth (2003) Probing the roles of key residues in the unique regulatory NADH binding site of type II citrate synthase of Escherichia coli. J. Biol. Chem. 278: 35435–35443.

    Article  CAS  PubMed  Google Scholar 

  20. Francois, J. A., C. M. Starks, S. Sivanuntakom, H. Jiang, and A. E. Ransome (2006) Structure of a NADH-insensitive hexamoeric citrate synthase that resists acid inactivation. Biochemistry 45: 13487–13499.

    Article  CAS  PubMed  Google Scholar 

  21. Iuchi, S. and E. C. C. Lin (1988) ArcA, a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc. Natl. Acad. Sci. USA 85: 1888–1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sauer, U., V. Hatzimanikatis, J. E. Bailey, M. Hochuli, T. Szyperski, and K. Wuthrich (1997) Metabolic fluxes in riboflavin-producing Bacillus substilis. Nat. Biotechnol. 15: 448–452.

    Article  CAS  PubMed  Google Scholar 

  23. Fischer, E., N. Zamboni, and U. Sauer (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 325: 308–316.

    Article  CAS  PubMed  Google Scholar 

  24. Perrenoud, A. and U. Sauer (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187: 3171–3179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin, S. H., S. Kim, J. Y. Kim, S. Lee, Y. Um, M. K. Oh, Y. R. Kim, J. Lee, and K. S. Yang (2012) Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumoniae strain KCTC 2242. J. Bacteriol. 194: 2736–2737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang, W. Y., D. Bikard, D. Cox, F. Zhang, and L. A. Marraffini (2013) RNA-guided editing of bacterial genomes using CRISPRCas systems. Nat. Biotechnol. 2013. 31: 233–239.

    Article  CAS  Google Scholar 

  27. Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heo, M.J., H. M. Jung, J. Um, S. W. Lee, and M. K. Oh (2017) Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli. ACS Synth. Biol. 6:182–189.

  29. Datsenko, K. A. and B. L. Wanner (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000 97: 6640–6645.

    Article  CAS  Google Scholar 

  30. Guex, N. and M. C. Peitsch (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714–2723.

    Article  CAS  PubMed  Google Scholar 

  31. Unden, G. and J. Bongaerts (1997) Alternative respiratory pathways of Escherichia coli: Energetics and transcriptional regulation in response to electron acceptors. BBA-Bioenergetics 1320: 217–234.

  32. Knowles, J. R. (1980) Enzyme-Catalyzed Phosphoryl Transfer-Reactions. Annu. Rev. Biochem. 49: 877–919.

    Article  CAS  PubMed  Google Scholar 

  33. Shalel-Levanon, S., K. Y. San, and G. N. Bennett (2005) Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab. Eng. 7: 364–374.

    Article  CAS  PubMed  Google Scholar 

  34. Wiegand, G. and S. J. Remington (1986) Citrate synthase-structure, control, and mechanism. Annu. Rev. Biophys. Biochem. 15: 97–117.

    Article  CAS  Google Scholar 

  35. Cunningham, L. and J. R. Guest (1998) Transcription and transcript processing in the sdhCDAB-sucABCD operon of Escherichia coli. Microbiology 144: 2113–2123.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Kyu Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Jung, HM., Jung, MY. et al. Effects of gltA and arcA Mutations on Biomass and 1,3-Propanediol Production in Klebsiella pneumoniae. Biotechnol Bioproc E 24, 95–102 (2019). https://doi.org/10.1007/s12257-018-0246-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0246-0

Keywords

Navigation