Skip to main content
Log in

Optimization of a Novel Two-step Process Comprising Re-esterification and Transesterification in a Single Reactor for Biodiesel Production Using Waste Cooking Oil

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Waste cooking oil (WCO) has attracted attention as a non-edible feedstock for biodiesel. Although an alkali catalyst has several advantages over an acid catalyst in biodiesel production, biodiesel conversion from WCO is only 5.2% when using an alkali catalyst (NaOH), owing to its high free fatty acid (FFA) content of 4.2%. In this study, a novel two-step process in a single reactor, comprised of re-esterification of the FFAs with crude glycerol, using a Tin (II) chloride (SnCl2) catalyst, and subsequent transesterification with methanol, using an alkali catalyst, was adopted, and each step was optimized. This study revealed that the FFA content after re-esterification should be approximately 1.5%, not only to save glycerol and the catalyst involved in the re-esterification, but also to achieve high biodiesel conversion during the transesterification. An alkaline catalyst was successfully used to produce biodiesel in the second step, and a 92.8% conversion to biodiesel was achieved under the optimized conditions (0.6% catalyst relative to WCO, 0.2mL-methanol/WCO, 70ºC, 3 h). Overall, this novel two-step process achieved highly enhanced biodiesel conversion (4.0% to 92.8%) with significantly reduced reaction time (12 h to 4 h) and methanol requirements (15 mL/g-WCO to 0.2 mL/g-WCO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, J., J. Xia, W. Jiang, Y. Li, and J. Li (2015) Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 180: 47–53.

    Article  CAS  PubMed  Google Scholar 

  2. Gui, M. M., K. T. Lee, and S. Bhatia (2008) Feasibility of edible oil vs. non–edible oil vs. waste edible oil as biodiesel feedstock. Energ. 33: 1646–1653.

    Article  CAS  Google Scholar 

  3. Kwon, M. H. and S. H. Yeom (2015) Optimization of one–step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Biotechnol. Bioproc. Eng. 20: 276–283.

    Article  CAS  Google Scholar 

  4. Sharma, A. K., P. K. Sahoo, S. Singhal, and G. Joshi (2016) Exploration of upstream and downstream process for microwave assisted sustainable biodiesel production from microalgae Chlorella vulgaris. Bioresour. Technol. 216: 793–800.

    Article  CAS  PubMed  Google Scholar 

  5. Supaporn, P. and S. H. Yeom (2016) Optimization of a two–step biodiesel production process comprised of lipid extraction from blended sewage sludge and subsequent lipid transesterification. Biotechnol. Bioproc. Eng. 21: 551–560.

    Article  CAS  Google Scholar 

  6. Supaporn, P. and S. H. Yeom (2017) Optimization of a one–step direct process for biodiesel production from blended sewage sludge. Korean J. Chem. Eng. 34: 360–365.

    Article  CAS  Google Scholar 

  7. Liu, Y., Q. Tu, G. Knothe, and M. Lu (2017) Direct transesterification of spent coffee grounds for biodiesel production. Fue. 199: 157–161.

    Article  CAS  Google Scholar 

  8. Go, W. G. and S. H. Yeom (2017) Statistical analysis and optimization of biodiesel production from waste coffee grounds by a two–step process. Biotechnol. Bioprocess Eng. 22: 440–449.

    Article  CAS  Google Scholar 

  9. Amin, T. K., N. A. S. Amin, and M. Hossein (2013) A review on novel processes of biodiesel production from waste cooking oil. Appl. Energ. 104: 683–710.

    Article  CAS  Google Scholar 

  10. Hong, I. K., H. Jeon, H. J. Kim, and S. B. Lee (2016) Preparation of waste cooking oil based biodiesel using microwave irradiation energy. J. Ind. Eng. Chem. 42: 107–112.

    Article  CAS  Google Scholar 

  11. Kwon, M. H. and S. H. Yeom (2015) Biodiesel production from wet marine microalgae via a one–step direct process in the presence of an adsorbent. Biotechnol. Bioprocess. Eng. 20: 593–598.

    Article  CAS  Google Scholar 

  12. Statics Korea, https://doi.org/kostat.go.kr/portal/korea

  13. KB financial group research institute, KBindustry report 2013–1} (2013). https://doi.org/www.kbfg.com/kbresearch

  14. https://doi.org/www.statista.com/statistics/219454/mcdonalds-restaurantsworldwide/

  15. Huang, G. H., F. Chen, D. Wei, X. W. Zhang, and G. Chen (2010) Biodiesel production by microalgal biotechnology. Appl. Energ. 87: 38–46.

    Article  CAS  Google Scholar 

  16. Freedman, B., R. H. Butterfield, and E. H. Pryde (1986) Transesterification kinetics of soybean oil. J. Am. Chem. Soc. 63: 1375–1380.

    CAS  Google Scholar 

  17. Zullaikah, S., C. C. Lai, S. R. Vali, and Y. H. Ju (2005) A twostep acid–catalyzed process for the production of biodiesel from rice bran oil. Bioresour. Technol. 96: 1889–1896.

    Article  CAS  PubMed  Google Scholar 

  18. Canakci, M. and J. V. Gerpen (2001) Biodiesel production from oils and fats with high free fatty acids. Am. Soc. Agri. Biological Eng. 44: 1429–1436.

    CAS  Google Scholar 

  19. Zayed, A., S. Foerster, F. Hartmann, M. Kroger, and M. Kaltschmitt (2012) Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fue. 96: 70–76.

    Article  CAS  Google Scholar 

  20. Phan, A. N. and T. M. Phan (2008) Biodiesel production from waste cooking oils. Fue. 87: 3490–3496.

    Article  CAS  Google Scholar 

  21. Lam, M. K., K. T. Lee, and A. R. Mohamed (2010) Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 28: 500–518.

    Article  CAS  PubMed  Google Scholar 

  22. Knothe, G., J. V. Gerpen, and J. Krahl (2005) Basics of the Transesterification Reaction, In: The Biodiesel Hand–book, AOCS Press, Champaign.

    Google Scholar 

  23. Kombe, G. G., A. K. Temu, H. M. Rajabu, G. D. Mrema1, J. Kansedo, and K. T. Lee (2013) Pre–treatment of high free fatty acids oils by chemical re–esterification for biodiesel production— A review. Adv. Chem. Eng. Sci. 3: 242–247.

    Article  CAS  Google Scholar 

  24. Vardon, D. R., B. R. Moser, W. Zheng, K. Witkin, R. L. Evangelista, T. J. Strathmann, K. Rajagopalan, and B. K. Sharma (2013) Complete utilization of spent coffee grounds to produce biodiesel, bio–oil, and biochar. ACS Sustain. Chem. Eng. 1: 1286–1294.

    Article  CAS  Google Scholar 

  25. Wang, Y., S. Ou, P. Liu, and Z. Zhang (2007) Preparation of biodiesel from waste cooking oil via two–step catalyzed process. Energy Conversion Manage. 48: 184–188.

    Article  CAS  Google Scholar 

  26. Jansri, S. (2015) Preparation of vegetable oil as biodiesel feedstock via re–esterification: A suitable catalyst. Energy Procedi. 79: 143–148.

    Article  CAS  Google Scholar 

  27. Bhosle, B. M. and R. Subramanian (2005) New approaches in deacidification of edible oils–a review. J. Food Eng. 69: 481–494.

    Article  Google Scholar 

  28. Wang, Y., S. Ma, L. Wang, S. Tang, W. W. Riley, and M. J. T. Reaney (2012) Solid superacid catalyzed glycerol esterification of free fatty acids in waste cooking oil for biodiesel production. Eur. J. Lipid Sci. Technol. 114: 315–324.

    Article  CAS  Google Scholar 

  29. Cai, Z. Z., Y. Wang, Y. L. Teng, K. M. Chong, J. W. Wang, J. W. Zhang, and D. P. Yang (2015) A two–step biodiesel production process from waste cooking oil via recycling crude glycerol esterification catalyzed by alkali catalyst. Fuel Process Technol. 137: 186–193.

    Article  CAS  Google Scholar 

  30. Cardoso, A. L., S. Cristina, G. Neves, and M. J. da Silva (2008) Esterification of oleic acid for biodiesel production catalyzed by SnCl2: A kinetic investigation. Energie. 1: 79–92.

    Article  CAS  Google Scholar 

  31. Jeon, D. J. and S. H. Yeom (2011) Comparison of methods for preventing methanol inhibition in enzymatic production of biodiesel. Korean J. Chem. Eng. 28: 1420–1426.

    Article  CAS  Google Scholar 

  32. Kusdiana, D. and S. Saka (2004) Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour. Technol. 91: 289–295.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by Gangneung-Wonju National University and we greatly appreciates this support. The authors also would like to thank Purdue University for allowing us to use its research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Yeom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeom, S.H., Go, Y.W. Optimization of a Novel Two-step Process Comprising Re-esterification and Transesterification in a Single Reactor for Biodiesel Production Using Waste Cooking Oil. Biotechnol Bioproc E 23, 432–441 (2018). https://doi.org/10.1007/s12257-018-0209-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0209-5

Keywords

Navigation