Skip to main content
Log in

Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Signal amplification strategies are essential for sensitive and efficient detection. Among the recent amplification strategies, the hybridization chain reaction has been intensively studied because it has advantages of reaction at constant temperature and detection at low cost without specialized equipment. In this review, we have discussed how to adjust experimental conditions of the hybridization chain reaction and attractive signal amplification techniques including colorimetric, fluorescence, and electrochemistry. As a result, many studies using the hybridization chain reaction have been successful in detecting sensitive signals by enhancing the signaling of the various targets. These exciting features of the hybridization chain reaction have the potential to be widely used in many areas such as in situ disease diagnosis, food, and environmental analysis. Therefore, various platforms developed by applying this technology are expected to play an essential role as an efficient biosensor in many fields in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yuan, Y. L., R. Yuan, Y. Q. Chai, Y. Zhuo, X. Y. Ye, X. X. Gan, and L. J. Bai (2012) Hemin/G–quadruplex simultaneously acts as NADH oxidase and HRP–mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem. Commun. (Camb). 48: 4621–4623.

    Article  CAS  Google Scholar 

  2. Eom, H. S., B. H. Hwang, D. H. Kim, I. B. Lee, Y. H. Kim, and H. J. Cha (2007) Multiple detection of food–borne pathogenic bacteria using a novel 16S rDNA–based oligonucleotide signature chip. Biosens. Bioelectron. 22: 845–853.

    Article  CAS  PubMed  Google Scholar 

  3. Hwang, B. H., H. H. Shin, and H. J. Cha (2017) Optimization of DNA microarray biosensors enables rapid and sensitive detection. Biotechnol. Bioproc. 22: 469–473.

    Article  CAS  Google Scholar 

  4. Hwang, B. H., H. H. Shin, J. H. Seo, and H. J. Cha (2012) Specific multiplex analysis of pathogens using a direct 16S rRNA hybridization in microarray system. Anal. Chem. 84: 4873–4879.

    Article  CAS  PubMed  Google Scholar 

  5. Chen, Y., J. Xu, J. Su, Y. Xiang, R. Yuan, and Y. Q. Chai (2012) In situ hybridization chain reaction amplification for universal and highly sensitive electrochemiluminescent detection of DNA. Anal. Chem. 84: 7750–7755.

    Article  CAS  PubMed  Google Scholar 

  6. Mullis, K. B. and F. A. Faloona (1987) Specific synthesis of DNA in vitro via a polymerase–catalyzed chain reaction. Methods Enzymol. 155: 335–350.

    Article  CAS  PubMed  Google Scholar 

  7. Liu, D., S. L. Daubendiek, M. A. Zillman, K. Ryan, and E. T. Kool (1996) Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118: 1587–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiesling, T., K. Cox, E. A. Davidson, K. Dretchen, G. Grater, S. Hibbard, R. S. Lasken, J. Leshin, E. Skowronski, and M. Danielsen (2007) Sequence specific detection of DNA using nicking endonuclease signal amplification (NESA). Nucleic Acids Res. 35: e117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dirks, R. M. and N. A. Pierce (2004) Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. US. 101: 15275–15278.

    Article  CAS  Google Scholar 

  10. Qiu, X., P. Wang, and Z. Cao (2014) Hybridization chain reaction modulated DNA–hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let–7 miRNA family. Biosens. Bioelectron. 60: 351–357.

    Article  CAS  PubMed  Google Scholar 

  11. Ding, X., W. Cheng, Y. Li, J. Wu, X. Li, Q. Cheng, and S. Ding (2017) An enzyme–free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosens. Bioelectron. 87: 345–351.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, Y., Y. A. Wang, X. Wang, and J. Z. Lu (2017) Polystyrene microspheres coupled with hybridization chain reaction for dual–amplified chemiluminescence detection of specific DNA sequences. J. Anal. Tes. 1: 306–314.

    Article  Google Scholar 

  13. Zou, L., R. M. Li, M. J. Zhang, Y. W. Luo, N. Zhou, J. Wang, and L. S. Ling (2017) A colorimetric sensing platform based upon recognizing hybridization chain reaction products with oligonucleotide modified gold nanoparticles through triplex formation. Nanoscal. 9: 1986–1992.

    Article  CAS  Google Scholar 

  14. Li, Z. B., X. M. Miao, A. H. Zhu, and L. S. Ling (2015) Hybridization chain reaction and gold nanoparticles dual signal amplification for sensitive glucose detection. Biochem. Eng. J. 103: 205–210.

    Article  CAS  Google Scholar 

  15. Bi, S., S. Z. Yue, and S. S. Zhang (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev. 46: 4281–4298.

    Article  CAS  PubMed  Google Scholar 

  16. Yang, D. W., Y. G. Tang, and P. Miao (2017) Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. Trac.-Trend. Anal. Chem. 94: 1–13.

    Article  CAS  Google Scholar 

  17. Huang, J., H. Wang, X. H. Yang, K. Quan, Y. J. Yang, L. Ying, N. L. Xie, M. Ou, and K. M. Wang (2016) Fluorescence resonance energy transfer–based hybridization chain reaction for in situ visualization of tumor–related mRNA. Chem. Sci. 7: 3829–3835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, S., K. Wang, K. B. Li, W. Shi, W. P. Jia, X. Chen, T. Sun, and D. M. Han (2017) A DNA–stabilized silver nanoclusters/ graphene oxide–based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens. Bioelectron. 91: 374–379.

    Article  CAS  PubMed  Google Scholar 

  19. Jia, L. P., L. J. Wang, R. N. Ma, L. Shang, W. Zhang, Q. W. Xue, and H. S. Wang (2018) An electrochemical aptasensor for the highly sensitive detection of 8–hydroxy–2'–deoxyguanosine based on the hybridization chain reaction. Talant. 179: 414–419.

    Article  CAS  Google Scholar 

  20. Koos, B., G. Cane, K. Grannas, L. Lof, L. Arngarden, J. Heldin, C. M. Clausson, A. Klaesson, M. K. Hirvonen, F. M. de Oliveira, V. O. Talibov, N. T. Pham, M. Auer, U. H. Danielson, J. Haybaeck, M. Kamali–Moghaddam, and O. Soderberg (2015) Proximitydependent initiation of hybridization chain reaction. Nat. Commun. 6: 7294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu, H. F., F. X. Kou, H. Z. Ye, Z. W. Wang, S. X. Huang, X. X. Liu, X. Zhu, Z. Y. Lin, and G. N. Chen (2017) Highly sensitive antibody–aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talant. 175: 177–182.

    Article  CAS  Google Scholar 

  22. Li, N. X., J. Y. Chen, M. Luo, C. H. Chen, X. H. Ji, and Z. K. He (2017) Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction. Biosens. Bioelectron. 87: 325–331.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, F., J. Elbaz, R. Orbach, N. Magen, and I. Willner (2011) Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. J. Am. Chem. Soc. 133: 17149–17151.

    Article  CAS  PubMed  Google Scholar 

  24. Shimron, S., F. Wang, R. Orbach, and I. Willner (2012) Amplified detection of DNA through the enzyme–free autonomous assembly of hemin/G–Quadruplex DNAzyme nanowires. Anal. Chem. 84: 1042–1048.

    Article  CAS  PubMed  Google Scholar 

  25. Xu, Y. and Z. Zheng (2016) Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction. Biosens. Bioelectron. 79: 593–599.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y., Z. W. Chen, Y. Tao, Z. Z. Wang, J. S. Ren, and X. G. Qu (2015) Hybridization chain reaction engineered dsDNA for Cu metallization: an enzyme–free platform for amplified detection of cancer cells and microRNAs. Chem. Commun. (Camb). 51: 11496–11499.

    Article  CAS  Google Scholar 

  27. Zhang, H., Z. Guo, H. Dong, H. Chen, and C. Cai (2017) An electrochemiluminescence assay for sensitive detection of methyltransferase activity in different cancer cells by hybridization chain reaction coupled with a G–quadruplex/ hemin DNAzyme biosensing strategy. Analys. 142: 2013–2019.

    Article  CAS  Google Scholar 

  28. Yang, X., Y. Yu, and Z. Gao (2014) A highly sensitive plasmonic DNA assay based on triangular silver nanoprism etching. ACS Nan. 8: 4902–4907.

    Article  CAS  Google Scholar 

  29. Guo, B., W. Cheng, Y. Xu, X. Zhou, X. Li, X. Ding, and S. Ding (2017) A simple surface plasmon resonance biosensor for detection of PML/RARalpha based on heterogeneous fusion gene–triggered nonlinear hybridization chain reaction. Sci. Rep. 7: 14037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai, W., S. Xie, J. Zhang, D. Tang, and Y. Tang (2017) An electrochemical impedance biosensor for Hg(2+) detection based on DNA hydrogel by coupling with DNAzyme–assisted target recycling and hybridization chain reaction. Biosens. Bioelectron. 98: 466–472.

    Article  CAS  PubMed  Google Scholar 

  31. Guo, Q., F. Bian, Y. Liu, X. Qu, X. Hu, and Q. Sun (2017) Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem. Commun. (Camb). 53: 4954–4957.

    Article  CAS  Google Scholar 

  32. Xu, Q., G. Zhu, and C. Y. Zhang (2013) Homogeneous bioluminescence detection of biomolecules using targettriggered hybridization chain reaction–mediated ligation without luciferase label. Anal. Chem. 85: 6915–6921.

    Article  CAS  PubMed  Google Scholar 

  33. Li, R., L. Zou, Y. Luo, M. Zhang, and L. Ling (2017) Ultrasensitive colorimetric detection of circulating tumor DNA using hybridization chain reaction and the pivot of triplex DNA. Sci. Rep. 7: 44212.

    Google Scholar 

  34. Fan, X. J., Y. Qi, Z. Y. Shi, Y. K. Lv, and Y. J. Guo (2018) A graphene–based biosensor for detecting microRNA with augmented sensitivity through helicase–assisted signal amplification of hybridization chain reaction. Sens. Actuators B Chem. 255: 1582–1586.

    Article  CAS  Google Scholar 

  35. Tang, S., P. Tong, M. Wang, J. Chen, G. Li, and L. Zhang (2015) A novel colorimetric sensor for Hg(2+) based on hybridization chain reaction and silver nanowire amplification. Chem. Commun. (Camb). 51: 15043–15046.

    Article  CAS  Google Scholar 

  36. Yuan, Y. H., S. Z. Chi, S. H. Wen, R. P. Liang, Z. M. Li, and J. D. Qiu (2018) Ratiometric electrochemical assay for sensitive detecting microRNA based on dual–amplification mechanism of duplex–specific nuclease and hybridization chain reaction. Biosens. Bioelectron. 102: 211–216.

    Article  CAS  PubMed  Google Scholar 

  37. Lv, X. X., W. C. Wu, C. G. Niu, D. W. Huang, X. Y. Wang, and X. G. Zhang (2016) A facile “turn–on” fluorescent method with high sensitivity for Hg2+ detection using magnetic Fe3O4 nanoparticles and hybridization chain reactions. Talant. 151: 62–67.

    Article  CAS  Google Scholar 

  38. Idili, A., A. Porchetta, A. Amodio, A. Vallee–Belisle, and F. Ricci (2015) Controlling Hybridization Chain Reactions with pH. Nano Lett. 15: 5539–5544.

    Article  CAS  PubMed  Google Scholar 

  39. Sui, N., K. Wang, L. N. Wang, F. X. Xie, T. L. Li, Q. Bai, D. Zhang, M. H. Liu, and W. W. Yu (2017) Ultrasensitive detection of Hg(II) through metal–enhanced fluorescence and hybridization chain reaction. Sens. Actuators B Chem. 245: 568–573.

    Article  CAS  Google Scholar 

  40. Wang, X. Z., A. W. Jiang, T. Hou, H. Y. Li, and F. Li (2015) Enzyme–free and label–free fluorescence aptasensing strategy for highly sensitive detection of protein based on targettriggered hybridization chain reaction amplification. Biosens. Bioelectron. 70: 324–329.

    Article  CAS  PubMed  Google Scholar 

  41. Li, Z., B. Li, Y. Zhou, H. Yin, J. Wang, and S. Ai (2017) Ultrasensitive microRNA–21 detection based on DNA hybridization chain reaction and SYBR Green dye. Anal. Biochem. 538: 20–25.

    Article  CAS  PubMed  Google Scholar 

  42. Yu, L. L., W. Lan, H. Xu, H. Chen, L. J. Bai, and W. X. Wang (2017) Label–free detection of Hg2+ based on Hg2+–triggered toehold binding, Exonuclease III assisted target recycling and hybridization chain reaction. Sens. Actuators B Chem. 248: 411–418.

    Article  CAS  Google Scholar 

  43. Zhang, J., Z. Shi, and Y. Jin (2015) Enzyme–free and label–free signal amplification for monitoring endonuclease activity and inhibition via hybridization chain reaction. Analys. 140: 3500–3506.

    Article  CAS  Google Scholar 

  44. Huang, J., Y. R. Wu, Y. Chen, Z. Zhu, X. H. Yang, C. J. Yang, K. M. Wang, and W. H. Tan (2011) Pyrene–excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew. Chem. Int. Ed. 50: 401–404.

    Article  CAS  Google Scholar 

  45. Huang, F. J., M. X. You, D. Han, X. L. Xiong, H. J. Liang, and W. H. Tan (2013) DNA Branch migration reactions through photocontrollable toehold formation. J. Am. Chem. Soc. 135: 7967–7973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yin, F. F., H. Q. Liu, Q. Li, X. Gao, Y. M. Yin, and D. B. Liu (2016) Trace MicroRNA quantification by means of plasmonenhanced hybridization chain reaction. Anal. Chem. 88: 4600–4604.

    Article  CAS  PubMed  Google Scholar 

  47. Song, W., K. Zhu, Z. Cao, C. Lau, and J. Lu (2012) Hybridization chain reaction–based aptameric system for the highly selective and sensitive detection of protein. Analys. 137: 1396–1401.

    Article  CAS  Google Scholar 

  48. Wu, Z., G. Q. Liu, X. L. Yang, and J. H. Jiang (2015) Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J. Am. Chem. Soc. 137: 6829–6836.

    Article  CAS  PubMed  Google Scholar 

  49. Bao, B. Q., J. Zhu, L. N. Gong, J. Chen, Y. R. Pan, and L. H. Wang (2017) Sensitive DNA detection using cascade amplification strategy based on conjugated polyelectrolytes and hybridization chain reaction. RSC Adv. 7: 3528–3533.

    Article  Google Scholar 

  50. Bi, S., M. Chen, X. Q. Jia, Y. Dong, and Z. H. Wang (2015) Hyperbranched hybridization chain reaction for triggered signal amplification and concatenated logic circuits. Angew. Chem. Int. Ed. 54: 8144–8148.

    Article  CAS  Google Scholar 

  51. Xuan, F. and I. M. Hsing (2014) Triggering hairpin–free chainbranching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J. Am. Chem. Soc. 136: 9810–9813.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Z., T. W. Fan, and I. M. Hsing (2017) Integrating DNA strand displacement circuitry to the nonlinear hybridization chain reaction. Nanoscal. 9: 2748–2754.

    Article  CAS  Google Scholar 

  53. Jiang, B. Y., Y. L. Wei, J. Q. Xu, R. Yuan, and Y. Xiang (2017) Coupling hybridization chain reaction with DNAzyme recycling for enzyme–free and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal. Chim. Act. 949: 83–88.

    Article  CAS  Google Scholar 

  54. Chandran, H., A. Rangnekar, G. Shetty, E. A. Schultes, J. H. Reif, and T. H. LaBean (2013) An autonomously self–assembling dendritic DNA nanostructure for target DNA detection. Biotechnol. J. 8: 221–227.

    Article  CAS  PubMed  Google Scholar 

  55. Ding, L. H., H. Y. Liu, L. N. Zhang, L. Li, and J. H. Yu (2018) Label–free detection of microRNA based on the fluorescence quenching of silicon nanoparticles induced by catalyzed hairpin assembly coupled with hybridization chain reaction. Sens. Actuators B Chem. 254: 370–376.

    Article  CAS  Google Scholar 

  56. Song, C. X., B. J. Li, X. H. Yang, K. M. Wang, Q. Wang, J. B. Liu, and J. Huang (2017) Use of beta–cyclodextrin–tethered cationic polymer based fluorescence enhancement of pyrene and hybridization chain reaction for the enzyme–free amplified detection of DNA. Analys. 142: 224–228.

    Article  CAS  Google Scholar 

  57. Ge, J., Z. M. Huang, Q. Xi, R. Q. Yu, J. H. Jiang, and X. Chu (2014) A novel graphene oxide based fluorescent nanosensing strategy with hybridization chain reaction signal amplification for highly sensitive biothiol detection. Chem. Commun. (Camb). 50: 11879–11882.

    Article  CAS  Google Scholar 

  58. Huang, J. H., X. Gao, J. J. Jia, J. K. Kim, and Z. G. Li (2014) Graphene oxide–based amplified fluorescent biosensor for Hg2+ detection through hybridization chain reactions. Anal. Chem. 86: 3209–3215.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, J., L. Wang, X. Xu, H. Wei, and W. Jiang (2016) Modular nuclease–responsive DNA three–way junction–based dynamic assembly of a DNA device and its sensing application. Anal. Chem. 88: 3817–3825.

    Article  CAS  PubMed  Google Scholar 

  60. Yang, H., Y. Gao, S. Wang, Y. Qin, L. Xu, D. Jin, F. Yang, and G. J. Zhang (2016) In situ hybridization chain reaction mediated ultrasensitive enzyme–free and conjugation–free electrochemcial genosensor for BRCA–1 gene in complex matrices. Biosens. Bioelectron. 80: 450–455.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y., L. Jiang, Q. Leng, Y. Wu, X. He, and K. Wang (2016) Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification. Biosens. Bioelectron. 77: 914–920.

    Article  CAS  PubMed  Google Scholar 

  62. Ge, Z., M. Lin, P. Wang, H. Pei, J. Yan, J. Shi, Q. Huang, D. He, C. Fan, and X. Zuo (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure–based electrochemical biosensor. Anal. Chem. 86: 2124–2130.

    Article  CAS  PubMed  Google Scholar 

  63. Song, C., G. Xie, L. Wang, L. Liu, G. Tian, and H. Xiang (2014) DNA–based hybridization chain reaction for an ultrasensitive cancer marker EBNA–1 electrochemical immunosensor. Biosens. Bioelectron. 58: 68–74.

    Article  CAS  PubMed  Google Scholar 

  64. Guo, J., J. Wang, J. Zhao, Z. Guo, and Y. Zhang (2016) Ultrasensitive multiplexed immunoassay for tumor biomarkers based on DNA hybridization chain reaction amplifying signal. ACS Appl. Mater. Interface. 8: 6898–6904.

    Article  CAS  Google Scholar 

  65. Li, C., H. Wang, J. Shen, and B. Tang (2015) Cyclometalated iridium complex–based label–free photoelectrochemical biosensor for DNA detection by hybridization chain reaction amplification. Anal. Chem. 87: 4283–4291.

    Article  CAS  PubMed  Google Scholar 

  66. Yun, W., J. L. Jiang, D. Z. Cai, X. F. Wang, G. Sang, J. S. Liao, T. C. Lu, and K. P. Yan (2016) Ultrasensitive electrochemical detection of UO22+ based on DNAzyme and isothermal enzyme–free amplification. RSC Adv. 6: 3960–3966.

    Article  CAS  Google Scholar 

  67. Ma, C., H. Y. Liu, L. N. Zhang, L. Li, M. Yan, J. H. Yu, and X. R. Song (2017) Microfluidic paper–based analytical device for sensitive detection of peptides based on specific recognition of aptamer and amplification strategy of hybridization chain reaction. Chemelectroche. 4: 1744–1749.

    Article  CAS  Google Scholar 

  68. Xu, Y. P., Y. J. Xu, Z. Zuo, X. Y. Zhou, B. Guo, Y. Sang, and S. J. Ding (2017) Triggered hairpin switch and in situ nonlinear hybridization chain reaction enabling label–free electrochemiluminescent detection of BCR/ABL fusion gene. J. Electroanal. Chem. 801: 192–197.

    Article  CAS  Google Scholar 

  69. Zhang, B., B. Q. Liu, D. P. Tang, R. Niessner, G. N. Chen, and D. Knopp (2012) DNA–Based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal. Chem. 84: 5392–5399.

    Article  CAS  PubMed  Google Scholar 

  70. Zhuang, J. Y., L. B. Fu, M. D. Xu, Q. Zhou, G. N. Chen, and D. P. Tang (2013) DNAzyme–based magneto–controlled electronic switch for picomolar detection of lead (II) coupling with DNAbased hybridization chain reaction. Biosens. Bioelectron. 45: 52–57.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, Y. X., K. J. Huang, L. L. He, and Y. H. Wang (2018) Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor. Biosens. Bioelectron. 100: 274–281.

    Article  CAS  PubMed  Google Scholar 

  72. Li, X. Y., J. J. Li, C. X. Zhu, X. H. Zhang, and J. H. Chen (2018) A new electrochemical immunoassay for prion protein based on hybridization chain reaction with hemin/G–quadruplex DNAzyme. Talant. 182: 292–298.

    Article  CAS  Google Scholar 

  73. Yu, Y. Y., Z. G. Chen, W. S. Jian, D. P. Sun, B. B. Zhang, X. C. Li, and M. C. Yao (2015) Ultrasensitive electrochemical detection of avian influenza A (H7N9) virus DNA based on isothermal exponential amplification coupled with hybridization chain reaction of DNAzyme nanowires. Biosens. Bioelectron. 64: 566–571.

    Article  CAS  PubMed  Google Scholar 

  74. Zhuang, J. Y., L. B. Fu, M. D. Xu, H. H. Yang, G. N. Chen, and D. P. Tang (2013) Sensitive electrochemical monitoring of nucleic acids coupling DNA nanostructures with hybridization chain reaction. Anal. Chim. Act. 783: 17–23.

    Article  CAS  Google Scholar 

  75. Zhou, Q., Y. X. Lin, Y. P. Lin, Q. H. Wei, G. N. Chen, and D. P. Tang (2016) In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target–induced hybridization chain reaction with the assembly of silver nanotags. Talant. 146: 23–28.

    Article  CAS  Google Scholar 

  76. Miao, P., Y. G. Tang, and J. Yin (2015) MicroRNA detection based on analyte triggered nanoparticle localization on a tetrahedral DNA modified electrode followed by hybridization chain reaction dual amplification. Chem. Commun. (Camb). 51: 15629–15632.

    Article  CAS  Google Scholar 

  77. Zhao, J., S. S. Hu, Y. Cao, B. Zhang, and G. X. Li (2015) Electrochemical detection of protein based on hybridization chain reaction–assisted formation of copper nanoparticles. Biosens. Bioelectron. 66: 327–331.

    Article  CAS  PubMed  Google Scholar 

  78. Jie, G. T. and G. F. Jie (2016) Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv. 6: 24780–24785.

    Article  CAS  Google Scholar 

  79. Wang, X. Z., L. Ge, Y. F. Yu, S. S. Dong, and F. Li (2015) Highly sensitive electrogenerated chemiluminescence biosensor based on hybridization chain reaction and amplification of gold nanoparticles for DNA detection. Sens. Actuators B Chem. 220: 942–948.

    Article  CAS  Google Scholar 

  80. Zhou, G. B., M. H. Lin, P. Song, X. Q. Chen, J. Chao, L. H. Wang, Q. Huang, W. Huang, C. H. Fan, and X. L. Zuo (2014) Multivalent capture and detection of cancer cells with dna nanostructured biosensors and multibranched hybridization chain reaction amplification. Anal. Chem. 86: 7843–7848.

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, T., H. S. Zhang, H. Tang, and J. H. Jiang (2017) Nanopore biosensor for sensitive and label–free nucleic acid detection based on hybridization chain reaction amplification. Talant. 175: 121–126.

    Article  CAS  Google Scholar 

  82. Liu, P., X. H. Yang, S. Sun, Q. Wang, K. M. Wang, J. Huang, J. B. Liu, and L. L. He (2013) Enzyme–free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Anal. Chem. 85: 7689–7695.

    Article  CAS  PubMed  Google Scholar 

  83. Gao, Z. Q., Z. L. Qiu, M. H. Lu, J. Shu, and D. P. Tang (2017) Hybridization chain reaction–based colorimetric aptasensor of adenosine 5'–triphosphate on unmodified gold nanoparticles and two label–free hairpin probes. Biosens. Bioelectron. 89: 1006–1012.

    Article  CAS  PubMed  Google Scholar 

  84. Miao, J., J. Wang, J. Guo, H. Gao, K. Han, C. Jiang, and P. Miao (2016) A plasmonic colorimetric strategy for visual miRNA detection based on hybridization chain reaction. Sci. Rep. 6: 32219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu, S. S., T. Hu, S. Wang, J. Sun, and X. R. Yang (2017) Ultrasensitive colorimetric assay system based on the hybridization chain reaction–triggered enzyme cascade amplification. ACS Appl. Mater. Interface. 9: 167–175.

    Article  CAS  Google Scholar 

  86. Ying, N., T. Sun, Z. Chen, G. Song, B. Qi, S. Bu, X. Sun, J. Wan, and Z. Li (2017) Colorimetric detection of microRNA based hybridization chain reaction for signal amplification and enzyme for visualization. Anal. Biochem. 528: 7–12.

    Article  CAS  PubMed  Google Scholar 

  87. Guo, Q., J. J. Han, S. Shan, D. F. Liu, S. S. Wu, Y. H. Xiong, and W. H. Lai (2016) DNA–based hybridization chain reaction and biotin–streptavidin signal amplification for sensitive detection of Escherichia coli O157:H7 through ELISA. Biosens. Bioelectron. 86: 990–995.

    Article  CAS  Google Scholar 

  88. Zhang, Y., W. Ren, H. Q. Luo, and N. B. Li (2016) Label–free cascade amplification strategy for sensitive visual detection of thrombin based on target–triggered hybridization chain reactionmediated in situ generation of DNAzymes and Pt nanochains. Biosens. Bioelectron. 80: 463–470.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, H., X. Cheng, L. Chen, F. Mo, L. Xu, and F. Fu (2017) Magnetic beads–based DNA hybridization chain reaction amplification and DNAzyme recognition for colorimetric detection of uranyl ion in seafood. Anal. Chim. Act. 956: 63–69.

    Article  CAS  Google Scholar 

  90. Liang, L., F. Lan, L. Li, S. Ge, J. Yu, N. Ren, H. Liu, and M. Yan (2016) Paper analytical devices for dynamic evaluation of cell surface N–glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification. Biosens. Bioelectron. 86: 756–763.

    Article  CAS  PubMed  Google Scholar 

  91. Ying, N., C. J. Ju, Z. Y. Li, W. S. Liu, and J. Y. Wan (2017) Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talant. 164: 432–438.

    Article  CAS  Google Scholar 

  92. Xu, J., J. Wu, C. Zong, H. Ju, and F. Yan (2013) Manganese porphyrin–dsDNA complex: a mimicking enzyme for highly efficient bioanalysis. Anal. Chem. 85: 3374–3379.

    Article  CAS  PubMed  Google Scholar 

  93. Gao, F., J. Lei, and H. Ju (2013) Label–free surface–enhanced Raman spectroscopy for sensitive DNA detection by DNAmediated silver nanoparticle growth. Anal. Chem. 85: 11788–11793.

    Article  CAS  PubMed  Google Scholar 

  94. Hu, P. P., H. Liu, S. J. Zhen, C. M. Li, and C. Z. Huang (2015) Nanosilver–based surface–enhanced Raman spectroscopic determination of DNA methyltransferase activity through realtime hybridization chain reaction. Biosens. Bioelectron. 73: 228–233.

    Article  CAS  PubMed  Google Scholar 

  95. Zheng, J., Y. Hu, J. Bai, C. Ma, J. Li, Y. Li, M. Shi, W. Tan, and R. Yang (2014) Universal surface–enhanced Raman scattering amplification detector for ultrasensitive detection of multiple target analytes. Anal. Chem. 86: 2205–2212.

    Article  CAS  PubMed  Google Scholar 

  96. Li, X. M., Y. Wang, L. L. Wang, and Q. L. Wei (2014) A surface plasmon resonance assay coupled with a hybridization chain reaction for amplified detection of DNA and small molecules. Chem. Commun. (Camb). 50: 5049–5052.

    Article  CAS  Google Scholar 

  97. Yao, G. H., R. P. Liang, X. D. Yu, C. F. Huang, L. Zhang, and J. D. Qiu (2015) Target–triggering multiple–cycle amplification strategy for ultrasensitive detection of adenosine based on surface plasma resonance techniques. Anal. Chem. 87: 929–936.

    Article  CAS  PubMed  Google Scholar 

  98. Ying, N., C. Ju, X. Sun, L. Li, H. Chang, G. Song, Z. Li, J. Wan, and E. Dai (2017) Lateral flow nucleic acid biosensor for sensitive detection of microRNAs based on the dual amplification strategy of duplex–specific nuclease and hybridization chain reaction. PLoS On. 12: e0185091.

    Article  CAS  Google Scholar 

  99. Yu, B., F. L. Li, T. C. Zhao, F. Li, B. Q. Zhou, and H. Y. Xu (2018) Hybridization chain reaction–based flow cytometric bead sensor for the detection of emetic Bacillus cereus in milk. Sens. Actuators B Chem. 256: 624–631.

    Article  CAS  Google Scholar 

  100. Li, Z. B., X. M. Miao, Z. Y. Cheng, and P. Wang (2017) Hybridization chain reaction coupled with the fluorescence quenching of gold nanoparticles for sensitive cancer protein detection. Sens. Actuators B Chem. 243: 731–737.

    Article  CAS  Google Scholar 

  101. Choi, J., K. R. Love, Y. Gong, T. M. Gierahn, and J. C. Love (2011) Immuno–hybridization chain reaction for enhancing detection of individual cytokine–secreting human peripheral mononuclear cells. Anal. Chem. 83: 6890–6895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhu, G. Z., S. F. Zhang, E. Q. Song, J. Zheng, R. Hu, X. H. Fang, and W. H. Tan (2013) Building fluorescent DNA nanodevices on target living cell surfaces. Angew. Chem. Int. Ed. 52: 5490–5496.

    Article  CAS  Google Scholar 

  103. Venkataraman, S., R. M. Dirks, P. W. Rothemund, E. Winfree, and N. A. Pierce (2007) An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2: 490–494.

    Article  PubMed  Google Scholar 

  104. Niu, S. Y., Y. Jiang, and S. S. Zhang (2010) Fluorescence detection for DNA using hybridization chain reaction with enzyme–amplification. Chem. Commun. (Camb). 46: 3089–3091.

    Article  CAS  Google Scholar 

  105. Zhang, Y. C., C. H. Liu, S. J. Sun, Y. L. Tang, and Z. P. Li (2015) Phosphorylation–induced hybridization chain reaction on beads: an ultrasensitive flow cytometric assay for the detection of T4 polynucleotide kinase activity. Chem. Commun. (Camb). 51: 5832–5835.

    Article  CAS  Google Scholar 

  106. Yang, L., C. H. Liu, W. Ren, and Z. P. Li (2012) Graphene surface–anchored fluorescence sensor for sensitive detection of MicroRNA coupled with enzyme–free signal amplification of hybridization chain reaction. ACS Appl. Mater. Interface. 4: 6450–6453.

    Article  CAS  Google Scholar 

  107. Yang, B., X. B. Zhang, L. P. Kang, G. L. Shen, R. Q. Yu, and W. Tan (2013) Target–triggered cyclic assembly of DNA–protein hybrid nanowires for dual–amplified fluorescence anisotropy assay of small molecules. Anal. Chem. 85: 11518–11523.

    Article  CAS  PubMed  Google Scholar 

  108. Sun, J., W. Jiang, J. Zhu, W. Li, and L. Wang (2015) Label–free fluorescence dual–amplified detection of adenosine based on exonuclease III–assisted DNA cycling and hybridization chain reaction. Biosens. Bioelectron. 70: 15–20.

    Article  CAS  PubMed  Google Scholar 

  109. Guo, J. J., J. C. Wang, J. J. Zhang, W. J. Zhang, and Y. H. Zhang (2017) Ultrasensitive non enzymatic multiple immunosensor for tumor markers detection by coupling DNA hybridization chain reaction with intercalated molecules. Biosens. Bioelectron. 90: 159–165.

    Article  CAS  PubMed  Google Scholar 

  110. Liu, S. F., L. Fang, Y. S. Tian, W. J. Wei, and L. Wang (2017) Label–free, non–enzymatic and ultrasensitive electrochemical nucleic acid biosensing by tandem DNA–fueled target recycling and hybridization chain reaction. Sens. Actuators B Chem. 244: 450–457.

    Article  CAS  Google Scholar 

  111. Zhang, L., Y. Liu, Y. Li, Y. Zhao, W. Wei, and S. Liu (2016) Sensitive electrochemical assaying of DNA methyltransferase activity based on mimic–hybridization chain reaction amplified strategy. Anal. Chim. Act. 933: 75–81.

    Article  CAS  Google Scholar 

  112. Liu, L. L., F. Liu, D. N. Jiang, G. M. Xiang, C. Liu, J. Yang, and X. Y. Pu (2016) Hybridization chain reaction and target recycling enhanced tumor necrosis factor alpha aptasensor with host-guest interaction for signal probe collection. Sens. Actuators B Chem. 231: 680–687.

    Article  CAS  Google Scholar 

  113. Hong, M. Q., M. Y. Wang, J. Wang, X. Q. Xu, and Z. Y. Lin (2017) Ultrasensitive and selective electrochemical biosensor for detection of mercury (II) ions by nicking endonuclease assisted target recycling and hybridization chain reaction signal amplification. Biosens. Bioelectron. 94: 19–23.

    Article  CAS  PubMed  Google Scholar 

  114. Song, C., G. M. Xie, L. Wang, L. Z. Liu, G. Tian, and H. Xiang (2014) DNA–based hybridization chain reaction for an ultrasensitive cancer marker EBNA–1 electrochemical immunosensor. Biosens. Bioelectron. 58: 68–74.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, W. J., J. J. Li, K. Rui, P. P. Gai, J. R. Zhang, and J. J. Zhu (2015) Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic–hybridization chain reaction enzyme–free dual signal amplification. Anal. Chem. 87: 3019–3026.

    Article  CAS  PubMed  Google Scholar 

  116. Zhuang, J., L. Fu, M. Xu, Q. Zhou, G. Chen, and D. Tang (2013) DNAzyme–based magneto–controlled electronic switch for picomolar detection of lead (II) coupling with DNA–based hybridization chain reaction. Biosens. Bioelectron. 45: 52–57.

    Article  CAS  PubMed  Google Scholar 

  117. Shuai, H. L., X. Wu, K. J. Huang, and Z. B. Zhai (2017) Ultrasensitive electrochemical biosensing platform based on spherical silicon dioxide/molybdenum selenide nanohybrids and triggered hybridization chain reaction. Biosens. Bioelectron. 94: 616–625.

    Article  CAS  PubMed  Google Scholar 

  118. Ge, S., F. Lan, L. Liang, N. Ren, L. Li, H. Liu, M. Yan, and J. Yu (2017) Ultrasensitive photoelectrochemical biosensing of cell Surface N–glycan expression based on the enhancement of nanogold–assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction. ACS Appl. Mater. Interface. 9: 6670–6678.

    Article  CAS  Google Scholar 

  119. Ge, L., W. Wang, T. Hou, and F. Li (2016) A versatile immobilization–free photoelectrochemical biosensor for ultrasensitive detection of cancer biomarker based on enzyme–free cascaded quadratic amplification strategy. Biosens. Bioelectron. 77: 220–226.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang, Y. L., H. Y. Li, M. Chen, X. Fang, P. F. Pang, H. B. Wang, Z. Wu, and W. R. Yang (2017) Ultrasensitive electrochemical biosensor for silver ion based on magnetic nanoparticles labeling with hybridization chain reaction amplification strategy. Sens. Actuators B Chem. 249: 431–438.

    Article  CAS  Google Scholar 

  121. Yuan, Y. H., Y. D. Wu, B. Z. Chi, S. H. Wen, R. P. Liang, and J. D. Qiu (2017) Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens. Bioelectron. 97: 325–331.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, J., W. Zhang, J. Guo, J. Wang, and Y. Zhang (2017) Electrochemical detection of C–reactive protein using copper nanoparticles and hybridization chain reaction amplifying signal. Anal. Biochem. 539: 1–7.

    Article  CAS  PubMed  Google Scholar 

  123. Hou, T., W. Li, X. J. Liu, and F. Li (2015) Label–free and enzyme–free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: A facile, sensitive, and highly specific MicroRNA assay. Anal. Chem. 87: 11368–11374.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang, X., B. Chen, M. He, H. Wang, and B. Hu (2016) Gold nanoparticles labeling with hybridization chain reaction amplification strategy for the sensitive detection of HepG2 cells by inductively coupled plasma mass spectrometry. Biosens. Bioelectron. 86: 736–740.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1C1B1014836), by the Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong Hee Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.R., Park, S.J., Lee, W.G. et al. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. Biotechnol Bioproc E 23, 355–370 (2018). https://doi.org/10.1007/s12257-018-0182-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0182-z

Keywords

Navigation