Skip to main content
Log in

R5 Peptide-based Biosilicification Using Methyltrimethoxysilane

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We examined the performance of methyltrimethoxysilane (MTMS), a precursor of silicic acid, in the process of biosilicification induced by the R5 peptide from Cylindrotheca fusiformis. Recombinant GFP-R5 fusion protein was produced by Escherichia coli cultured at 25°C as a soluble and functional formation, but not at 37°C. MTMS-based biosilica deposits had a larger average diameter compared to tetraethyl orthosilicate (TEOS)-based deposits. Reducing phosphate concentration in the buffer system led to a decrease in the size of MTMS-based biosilica. These results provide insight into the surface modification of biosilica, and control of biosilica particle size, when using hydrophobic precursors such as MTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis, M. E. (2002) Ordered porous materials for emerging applications. Nature 417: 813–821.

    Article  CAS  Google Scholar 

  2. Sinkó, K. (2010) Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials 3: 704–740.

    Article  Google Scholar 

  3. Jo, B. H., C. S. Kim, Y. K. Jo, H. Cheong, and H. J. Cha (2016) Recent developments and applications of bioinspired silicification. Kor. J. Chem. Eng. 33: 1125–1133.

    Article  CAS  Google Scholar 

  4. Betancor, L. and H. R. Luckarift (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol. 26: 566–572.

    Article  CAS  Google Scholar 

  5. Lechner, C. C. and C. F. Becker (2014) A sequence-function analysis of the silica precipitating silaffin R5 peptide. J. Pept. Sci. 20: 152–158.

    Article  CAS  Google Scholar 

  6. Jo, B. H., J. H. Seo, Y. J. Yang, K. Baek, Y. S. Choi, S. P. Pack, S. H. Oh, and H. J. Cha (2014) Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2 sequestration. ACS Catal. 4: 4332–4340.

    Article  CAS  Google Scholar 

  7. Kuan, I.-C., C.-A. Chuang, S.-L. Lee, and C.-Y. Yu (2012) Alkyl-substituted methoxysilanes enhance the activity and stability of d-amino acid oxidase encapsulated in biomimetic silica. Biotechnol. Lett. 34: 1493–1498.

    Article  CAS  Google Scholar 

  8. Gill, I. and A. Ballesteros (2000) Bioencapsulation within synthetic polymers (Part 1): sol–gel encapsulated biologicals. Trends Biotechnol. 18: 282–296.

    Article  CAS  Google Scholar 

  9. Reetz, M. T. (1997) Entrapment of biocatalysts in hydrophobic sol-gel materials for use in organic chemistry. Adv. Mater. 9: 943–954.

    Article  CAS  Google Scholar 

  10. Rao, A. V., S. D. Bhagat, H. Hirashima, and G. Pajonk (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interf. Sci. 300: 279–285.

    Article  CAS  Google Scholar 

  11. Du, M., N. Mao, and S. Russell (2016) Control of porous structure in flexible silicone aerogels produced from methyltrimethoxysilane (MTMS): The effect of precursor concentration in sol–gel solutions. J. Mater. Sci. 51: 719–731.

    Article  CAS  Google Scholar 

  12. Nam, D. H., K. Won, Y. H. Kim, and B. I. Sang (2009) A novel route for immobilization of proteins to silica particles incorporating silaffin domains. Biotechnol. Prog. 25: 1643–1649.

    CAS  Google Scholar 

  13. Park, J. C., G. T. Lee, C. S. Kim, and J. H. Seo (2017) Effects of surface charge and ligand type of Au nanoparticles on green fluorescent protein-expressing Escherichia coli. Biotechnol. Bioproc. Eng. 22: 83–88.

    Article  CAS  Google Scholar 

  14. Kim, D. H., J. C. Park, G. E. Jeon, C. S. Kim, and J. H. Seo (2017) Effect of the size and shape of silver nanoparticles on bacterial growth and metabolism by monitoring optical density and fluorescence intensity. Biotechnol. Bioproc. Eng. 22: 210–217.

    Article  CAS  Google Scholar 

  15. Song, Y. H., C. S. Kim, and J. H. Seo (2016) Noninvasive monitoring of environmental toxicity through green fluorescent protein expressing Escherichia coli. Kor. J. Chem. Eng. 33: 1331–1336.

    Article  CAS  Google Scholar 

  16. Philipavičius, J., I. Kazadojev, A. Beganskienė, A. Melninkaitis, V. Sirutkaitis, and A. Kareiva (2008) Hydrophobic antireflective silica coatings via sol-gel process. Mater. Sci. 14: 283–287.

    Google Scholar 

  17. Sumper, M., S. Lorenz, and E. Brunner (2003) Biomimetic control of size in the polyamine-directed formation of silica nanospheres. Angew. Chem. In. Ed. 42: 5192–5195.

    Article  CAS  Google Scholar 

  18. Kröger, N., S. Lorenz, E. Brunner, and M. Sumper (2002) Selfassembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Sci. 298: 584–586.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Hyun Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.C., Kim, D.H., Kim, C.S. et al. R5 Peptide-based Biosilicification Using Methyltrimethoxysilane. Biotechnol Bioproc E 23, 11–15 (2018). https://doi.org/10.1007/s12257-017-0451-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0451-2

Keywords

Navigation