Skip to main content
Log in

Indirect method for quantification of cellular biomass in a solidscontaining medium used as pre-culture for cellulase production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A process that combines the advantages of solid state fermentation (SSF) and submerged fermentation (SmF) could increase the efficiency of cellulase production required in the cellulosic ethanol industry. Due to the difficulty of measuring cellular biomass in the presence of solids, we developed a novel methodology for indirect quantification of biomass during production of the preculture for a combined fermentation process. Cultivation of Aspergillus niger was initiated as SSF using sugar cane bagasse as a solid substrate. Experiments were conducted in the absence of bagasse to determine growth kinetic parameters. Changes in glucose and biomass concentrations were measured. and the data were used for simulation employing a simple unstructured model. Parameters were estimated by applying a combination of Simulated Annealing (SA) and Levenberg-Marquardt (LM) algorithms to search for minimization of the error between model estimates and experimental data. Growth kinetics followed the Contois model, with a maximum specific growth rate (μmax) of 0.042/h, a yield coefficient for biomass formation (Yx/s) of 0.30 g/g and a death constant (kD) of 0.005/h.These parameters were used to simulate cellular growth in the solids-containing medium. The proposed model accurately described the experimental data and succeeded in simulating the cell concentration profile. The selected pre-culture conditions (24 h as SSF followed by 48 h as SmF) were applied for cellulase production using the combined fermentation process and resulted in an endoglucanase activity (1,052 ± 34 U/L) greater than that obtained using the conventional SmF procedure (824 ± 44 U/L). Besides the standardization of pre-culture conditions, this methodology could be very useful in systems where direct measurement of cell mass is not possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lynd, L. R. (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: Technology, economics, the environment, and policy. Annu. Rev. Energy Environ. 21: 403–465.

    Article  Google Scholar 

  2. Wilson, D. B. and D. C. Irwin (1999) Genetics and properties of cellulases. Adv. Biochem. Eng. Biotechnol. 65: 1–21.

    CAS  Google Scholar 

  3. Zhang, Y. -H. P. and L. R. Lynd (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnol. Bioeng. 88: 797–824.

    Article  CAS  Google Scholar 

  4. Kubicek, C. P., M. Mikus, A. Schuster, M. Schmoll, and B. Seiboth (2009) Metabolic engineering strategies for the improved of cellulase production by Hypocrea jecorina. Biotechnol. Biofuels 2: 19.

    Article  Google Scholar 

  5. Raimbault, M. (1998) General and microbiological aspects of solid substrate fermentation. Eletron. J. Biotechn. 1: 3–45.

    Google Scholar 

  6. Acuna-Arguelles, M. E., M. Gutierrez-Rojas, G. Viniegra-González, and E. Favela-Torres (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 43: 808–814.

    Article  CAS  Google Scholar 

  7. Saqib, A. A. N., M. Hassan, N. F. Khan, and S. Baig (2010) Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Proc. Biochem. 45: 641–646.

    Article  CAS  Google Scholar 

  8. Singhania, R. R., R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enz. Microb. Tech. 46: 541–549.

    Article  CAS  Google Scholar 

  9. Villena, G. K., T. Fujikawa, S. Tsuyumu, and M. Gutiérrez-Correa (2009) Differential gene expression of some lignocellulolytic enzymes in Aspergillus niger biofilms. Rev. Peru Biol. 15: 97–102.

    Google Scholar 

  10. Lynd, L. R., P. J. Weimer, W. H. van Zyl, and I. S. Pretorius (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66: 506–577.

    Article  CAS  Google Scholar 

  11. Domingues, F.C., J. A. Queiroz, J. M. Cabral, and L. P. Fonseca (2000) The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enz. Microb. Tech. 26: 394–401.

    Article  CAS  Google Scholar 

  12. Kennedy, M. J., M. S. Thakur, D. I. C. Wang, and G. N. Stephanopoulos (1992) Techniques for the estimation of cell concentration in the presence of suspended solids. Biotechnol. Prog. 8: 375–381.

    Article  CAS  Google Scholar 

  13. Carvalho, J. C., A. Pandey, B. O. Oishi, D. Brand, J. A. Rodriguez-Léon, and C. R. Soccol (2006) Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation. Biochem. Eng. J. 29: 262–269.

    Article  Google Scholar 

  14. Prado, F. C., L. R. S. Vandenberghe, C. Lisboa, J. Paca, A. Pandey, and C. R. Soccol (2004) Relation between citric acid production and respiration rate of Aspergillus niger in solid-state fermentation. Eng. Life Sci. 4: 179–186.

    Article  CAS  Google Scholar 

  15. Koutinas, A. A., R. Wang, and C. Webb (2003) Estimation of fungal growth in complex, heterogeneous culture. Biochem. Eng. J. 14: 93–100.

    Article  CAS  Google Scholar 

  16. Ooijkaas, L. P., J. Tramper, and R. M. Buitelaar (1998) Biomass estimation of Coniothyrium minitans in solid-state fermentation. Enz. Microb. Tech. 22: 480–486.

    Article  CAS  Google Scholar 

  17. Scotti, C. T., C. Vergoignan, G. Feron, and A. Durand (2001) Glucosamine measurement as indirect method for biomass estimation of Cunninghamella elegans grown in solid state cultivation conditions. Biochem. Eng. J. 7: 1–5.

    Article  CAS  Google Scholar 

  18. Osma, J. F., J. L. Toca-Herrera, and S. Rodriguez-Couto (2011) Environmental, scanning electron and optical microscope image analysis software for determining volume and occupied area of solid-state fermentation fungal cultures. Biotechnol. J. 6: 45–55.

    Article  CAS  Google Scholar 

  19. Couri, S., E. P. Merces, B. C. V. Neves, and L. F. Senna (2006) Digital image processing as a tool to monitor biomass growth in Aspergillus niger 3T5B8 solid-state fermentation: Preliminary results. J. Microsci. 224: 290–297.

    Article  CAS  Google Scholar 

  20. Terebiznik, M. R. and A. M. R. Pilosof (1999) Biomass estimation in solid state fermentation by modeling dry matter weight loss. Biotechnol. Tech. 13: 215–219.

    Article  CAS  Google Scholar 

  21. Gill, N. K., M. Appleton, and G. J. Lye (2008) Thermal profiling for parallel on-line monitoring of biomass growth in miniature stirred bioreactors. Biotechnol. Lett. 30: 1571–1575.

    Article  CAS  Google Scholar 

  22. Hongquiang, L. and C. Hongzhang (2008) Near-infrared spectroscopy with a fiber-optic probe for state variables determination in solid-state fermentation. Proc. Biochem. 43: 511–516.

    Article  Google Scholar 

  23. Mitchell, D. A. (1992) Growth patterns growth kinetics and the modelling of growth in solid-state-cultivation. pp. 87–112. In: H. W. Doelle, D. A. Mitchell, and C. E. Rolz (eds.). Solid Substrate Cultivation. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  24. Moles, C. G., P. Mendes, and J. R. Banga (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13: 2467–2474.

    Article  CAS  Google Scholar 

  25. Rodriguez-Fernandez, M., P. Mendes, and J. R. Banga (2006) A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 83: 248–265.

    Article  CAS  Google Scholar 

  26. Silva, R. G., A. J. G. Cruz, C. O. Hokka, R. L. C. Giordano, and R. C. Giordano (2001) A hybrid neural network algorithm for online state inference that accounts for differences in inoculum of Cephalosporium acremonium in fed-batch fermentors. Appl. Biochem. Biotechnol. 91–93: 341–352.

    Article  Google Scholar 

  27. Gernaey, K. V., A. E. Lantz, P. Tufvesson, J. M. Woodley, and G. Sin (2007) Application of mechanistic models to fermentation and biocatalysis for next-generation processes. Appl. Biochem. Biotechnol. 143: 142–152.

    Article  Google Scholar 

  28. Couri, S. and A. X. Farias (1995) Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes. Revista de Microbiologia 26: 314–317.

    CAS  Google Scholar 

  29. Mandels, M. and D. Sternberg (1976) Recent advances in cellulases technology. J. Ferment. Technol. 54: 267–286.

    CAS  Google Scholar 

  30. Montera, L., A. C. L. Horta, T. C. Zangirolami, M. C. Nicoletti, T. S. Carmo, and V. M. Gonçalves (2008) A heuristic search for optimal parameter values of three biokinetic growth models for describing batch cultivations of Streptococcus pneumoniae in bioreactors. Lect. Notes Comput. Sci. 5027: 359–368.

    Article  Google Scholar 

  31. Nelles, O. (2001) Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Germany.

    Google Scholar 

  32. Shuler, M. L. and F. Kargi (2002) Bioprocess engineering: Basic concepts. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  33. Ghose, T. K. (1987) Measurement of cellulase activities. Pure Appl. Chem. 59: 257–268.

    Article  CAS  Google Scholar 

  34. Miller, G. L. (1959) Use of dinitrosalicilic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  35. Castro, A. M., K. C. N. R. Pedro, Cruz, J. C. Da, M. C. Ferreira, S. G. F. Leite, and N. Pereira Jr. (2010) Trichoderma harzianum IOC-4038: A promising strain for the production of a cellulolytic complex with significant β-glucosidase activity from sugarcane bagasse cellulignin. Appl. Biochem. Biotechnol. 162: 2111–2122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Farinas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, F.M., Bacchin, A.L.G., Horta, A.C.L. et al. Indirect method for quantification of cellular biomass in a solidscontaining medium used as pre-culture for cellulase production. Biotechnol Bioproc E 17, 100–108 (2012). https://doi.org/10.1007/s12257-011-0405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-011-0405-z

Keywords

Navigation