Skip to main content

Advertisement

Log in

Down-Regulation of BAX Gene During Carcinogenesis and Acquisition of Resistance to 5-FU in Colorectal Cancer

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Carcinogenesis and resistance to chemotherapy could be as results of expression variations in apoptosis regulating genes. Changes in the expression of apoptosis interfering genes may contribute to colorectal carcinogenesis and resistance to 5-Flourouracil (5-FU) during treatment schedule period. The present study aimed to evaluate the expression of pro-apoptotic and anti-apoptotic genes in colorectal cancer tumor tissues, normal adjacent tissues, and tumor colorectal cancer cell line during acquiring resistance to 5-FU in HT-29 based on Bolus treatment protocol. The normal and tumor tissues were obtained from hospital after surgery and total RNA was extracted for expression analysis. The HT-29 colorectal cancer cell line was cultured and exposed with 5-FU in three stages based on Bolus protocol. The MTT assay and Real Time PCR were carried out to determine the sensitivity to the drug and expression of desired genes, respectively. The obtained data showed that Proapoptotic genes, BAX and BID, were down-regulated in resistant derivate cells compared to wild type HT-29 cells. On the other hand Antiapoptotic genes, CIAP1 and XIAP, showed upregulation in resistant cells compared to wild type ones. Furthermore, BAX and FAS genes showed down-regulation in tumor samples in comparison to normal adjacent tissues. In conclusion, the results of our study suggest that BAX down-regulation could contribute as an important factor during both colorectal carcinogenesis and cell resistance to 5-FU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig 3
Fig 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herszényi L, Tulassay Z (2010) Epidemiology of gastrointestinal and liver tumors. Eur Rev Med Pharmacol Sci 14(4):249–258

    PubMed  Google Scholar 

  2. Naishadham D, Lansdorp-Vogelaar I, Siegel R, Cokkinides V, Jemal A (2011) State disparities in colorectal cancer mortality patterns in the United States. Cancer Epidemiol Biomarkers Prev 20(7):1296–1302

    Article  PubMed  Google Scholar 

  3. Pourhoseingholi MA (2012) Increased burden of colorectal cancer in Asia. World J Gastrointest Oncol 4(4):68–70

    Article  PubMed Central  PubMed  Google Scholar 

  4. Park S, Bae J, Nam BH, Yoo KY (2008) Aetiology of cancer in Asia. Asian Pac J Cancer Prev 9(3):371–380

    PubMed  Google Scholar 

  5. Koehler A, Bataille F, Schmid C, Ruemmele P, Waldeck A, Blaszyk H, Hartmann A, Hofstaedter F, Dietmaier W (2004) Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. J Pathol 204(1):65–74

    Article  PubMed  CAS  Google Scholar 

  6. Fukushima T, Takenoshita S (2001) Colorectal carcinogenesis. Fukushima J Med Sci 47(1):1–11

    Article  PubMed  CAS  Google Scholar 

  7. Watson AJ (2004) Apoptosis and colorectal cancer. Gut 53(11):1701–1709

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Shaib W, Lee V, Saif MW (2009) Bolus 5-fluorouracil as an alternative modality to infusion 5-fluorouracil in a patient with rectal cancer and capecitabine-induced cardiotoxicity. In Vivo 23(5):821–826

    PubMed  CAS  Google Scholar 

  9. Berger FG, Berger SH (2006) Thymidylate synthase as a chemotherapeutic drug target: where are we after fifty years? Cancer Biol Ther 5(9):1238–1241

    Article  PubMed  CAS  Google Scholar 

  10. Buroker TR, O’Connell MJ, Wieand HS, Krook JE, Gerstner JB, Mailliard JA, Schaefer PL, Levitt R, Kardinal CG, Gesme DH Jr (1994) Randomized comparison of two schedules of fluorouracil and leucovorin in the treatment of advanced colorectal cancer. J Clin Oncol 12(1):14–20

    PubMed  CAS  Google Scholar 

  11. Piedbois P, Rougier P, Buyse M, Pignon JP, Ryan L, Hansen R, Zee B, Weinerman B, Pater J, Leichman C, Macdonald J, Benedetti J, Lokich J, Fryer J, Brufman G, Isacson R, Laplanche A, Levy E (1998) Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. Meta-analysis Group In Cancer. J Clin Oncol 16(1):301–308

    Google Scholar 

  12. Schmidt WM, Kalipciyan M, Dornstauder E, Rizovski B, Steger GG, Sedivy R, Mueller MW, Mader RM (2004) Dissecting progressive stages of 5-fluorouracil resistance in vitro using RNA expression profiling. Int J Cancer 112(2):200–212

    Article  PubMed  CAS  Google Scholar 

  13. Zhang N, Yin Y, Xu SJ, Chen WS (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13(8):1551–1569

    Article  PubMed  CAS  Google Scholar 

  14. Peters GJ, Backus HH, Freemantle S, van Triest B, Codacci-Pisanelli G, van der Wilt CL, Smid K, Lunec J, Calvert AH, Marsh S, McLeod HL, Bloemena E, Meijer S, Jansen G, van Groeningen CJ, Pinedo HM (2002) Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochim Biophys Acta 1587(2–3):194–205

    Article  PubMed  CAS  Google Scholar 

  15. Grem JL (2005) Screening for dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res 11(14):5067–5068

    Article  PubMed  CAS  Google Scholar 

  16. Arnold CN, Goel A, Boland CR (2003) Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer 106(1):66–73

    Article  PubMed  CAS  Google Scholar 

  17. Akao Y, Noguchi S, Iio A, Kojima K, Takagi T, Naoe T (2011) Dysregulation of microRNA-34a expression causes drug-resistance to 5-FU in human colon cancer DLD-1 cells. Cancer Lett 300(2):197–204

    Article  PubMed  CAS  Google Scholar 

  18. Choi S, Ku JL (2011) Resistance of colorectal cancer cells to radiation and 5-FU is associated with MELK expression. Biochem Biophys Res Commun 412(2):207–213

    Article  PubMed  CAS  Google Scholar 

  19. Humeniuk R, Menon LG, Mishra PJ, Gorlick R, Sowers R, Rode W, Pizzorno G, Cheng YC, Kemeny N, Bertino JR, Banerjee D (2009) Decreased levels of UMP kinase as a mechanism of fluoropyrimidine resistance. Mol Cancer Ther 8(5):1037–1044

    Article  PubMed  CAS  Google Scholar 

  20. Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz J, Lacorte JM, Staedel C, Lesuffleur T (2002) Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer 98(4):498–504

    Article  PubMed  CAS  Google Scholar 

  21. Shi X, Liu S, Kleeff J, Friess H, Büchler MW (2002) Acquired resistance of pancreatic cancer cells towards 5-fluorouracil and gemcitabine is associated with altered expression of apoptosis-regulating genes. Oncology 62(4):354–362

    Article  PubMed  CAS  Google Scholar 

  22. Meng J, Zhang HH, Zhou CX, Li C, Zhang F, Mei QB (2012) The histone deacetylase inhibitor trichostatin A induces cell cycle arrest and apoptosis in colorectal cancer cells via p53-dependent and -independent pathways. Oncol Rep 28(1):384–388

    PubMed  CAS  Google Scholar 

  23. Pizzorno G, Handschumacher RE (1995) Effect of clinically modeled regimens on the growth response and development of resistance in human colon carcinoma cell lines. Biochem Pharmacol 49(4):559–565

    Article  PubMed  CAS  Google Scholar 

  24. Igney FH, Krammer PH (2002) Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2(4):277–288

    Article  PubMed  CAS  Google Scholar 

  25. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94(4):481–490

    Article  PubMed  CAS  Google Scholar 

  26. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Kaufmann T, Strasser A, Jost PJ (2012) Fas death receptor signalling: roles of Bid and XIAP. Cell Death Differ 19(1):42–50

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Stevenson L, Allen WL, Proutski I, Stewart G, Johnston L, McCloskey K, Wilson PM, Longley DB, Johnston PG (2011) Calbindin 2 (CALB2) regulates 5-fluorouracil sensitivity in colorectal cancer by modulating the intrinsic apoptotic pathway. PLoS One 6(5):e20276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Samuel S, Fan F, Dang LH, Xia L, Gaur P, Ellis LM (2011) Intracrine vascular endothelial growth factor signaling in survival and chemoresistance of human colorectal cancer cells. Oncogene 30(10):1205–1212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS (2002) BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 4(11):842–849

    Article  PubMed  CAS  Google Scholar 

  31. Miao J, Chen GG, Chun SY, Chak EC, Lai PB (2004) Bid sensitizes apoptosis induced by chemotherapeutic drugs in hepatocellular carcinoma. Int J Oncol 25(3):651–659

    PubMed  CAS  Google Scholar 

  32. Li Y, Jian Z, Xia K, Li X, Lv X, Pei H, Chen Z, Li J (2006) XIAP is related to the chemoresistance and inhibited its expression by RNA interference sensitize pancreatic carcinoma cells to chemotherapeutics. Pancreas 32(3):288–296

    Article  PubMed  Google Scholar 

  33. Nomura T, Yamasaki M, Nomura Y, Mimata H (2005) Expression of the inhibitors of apoptosis proteins in cisplatin-resistant prostate cancer cells. Oncol Rep 14(4):993–997

    PubMed  CAS  Google Scholar 

  34. Karasawa H, Miura K, Fujibuchi W, Ishida K, Kaneko N, Kinouchi M, Okabe M, Ando T, Murata Y, Sasaki H, Takami K, Yamamura A, Shibata C, Sasaki I (2009) Down-regulation of cIAP2 enhances 5-FU sensitivity through the apoptotic pathway in human colon cancer cells. Cancer Sci 100(5):903–913

    Article  PubMed  CAS  Google Scholar 

  35. Katkoori VR, Suarez-Cuervo C, Shanmugam C, Jhala NC, Callens T, Messiaen L, Posey J 3rd, Bumpers HL, Meleth S, Grizzle WE, Manne U (2010) Bax expression is a candidate prognostic and predictive marker of colorectal cancer. J Gastrointest Oncol 1(2):76–89

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Guillen-Ahlers H, Suckow MA, Castellino FJ, Ploplis VA (2010) Fas/CD95 deficiency in ApcMin/+ mice increases intestinal tumor burden. PLoS One 5(2):e9070

    Article  PubMed Central  PubMed  Google Scholar 

  37. Butler LM, Dobrovic A, Bianco T, Cowled PA (2000) Promoter region methylation does not account for the frequent loss of expression of the Fas gene in colorectal carcinoma. Br J Cancer 82(1):131–135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Petak I, Danam RP, Tillman DM, Vernes R, Howell SR, Berczi L, Kopper L, Brent TP, Houghton JA (2003) Hypermethylation of the gene promoter and enhancer region can regulate Fas expression and sensitivity in colon carcinoma. Cell Death Differ 10(2):211–217

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290(5493):989–992

    Article  PubMed  CAS  Google Scholar 

  40. Jansson A, Sun XF (2002) Bax expression decreases significantly from primary tumor to metastasis in colorectal cancer. J Clin Oncol 20(3):811–816

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Iran National Tumor Bank personnel, for their kindly cooperation in providing biological materials. The study was funded by grants from Shahid Beheshti University of Medical Sciences and Baqiatallah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Kazemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoochehri, M., Karbasi, A., Bandehpour, M. et al. Down-Regulation of BAX Gene During Carcinogenesis and Acquisition of Resistance to 5-FU in Colorectal Cancer. Pathol. Oncol. Res. 20, 301–307 (2014). https://doi.org/10.1007/s12253-013-9695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9695-0

Keywords

Navigation