Skip to main content
Log in

Total chemical synthesis, assembly of human torque teno virus genome

  • Published:
Virologica Sinica

Abstract

Torque teno virus (TTV) is a nonenveloped virus containing a single-stranded, circular DNA genome of approximately 3.8kb. We completely synthesized the 3 808 nucleotides of the TTV (SANBAN isolate) genome, which contains a hairpin structure and a GC-rich region. More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerase chain assembly reaction (PCA), and the synthesis was completed with splicing by overlap extension (SOEing). This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal K L, Büchi H, Caruthers M H, et al. 1970. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature, 227(5253): 27–34.

    Article  CAS  PubMed  Google Scholar 

  2. Bendinelli M, Pistello M, Maggi F, et al. 2001. Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev, 14(1): 98–113.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Camci C, Guney C, Balkan A, et al. 2002. The prevalence of TT virus in cancer patients. New Microbiol, 25(4): 463–468.

    CAS  PubMed  Google Scholar 

  4. Cello J, Paul A V, Wimmer E. 2002. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science, 297(5583): 1016–1018.

    Article  CAS  PubMed  Google Scholar 

  5. Dillon P J, Rosen C A. 1990. A rapid method for the construction of synthetic genes using the polymerase chain reaction. Biotechniques, 9(3): 298–300.

    CAS  PubMed  Google Scholar 

  6. Gibson D G, Glass J I, Lartigue C, et al. 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987): 52–56.

    Article  CAS  PubMed  Google Scholar 

  7. Hapgood J P, Riedemann J, Scherer S D. 2001. Regulation of gene expression by GC-rich DNA cis-elements. Cell Biol Int, 25(1): 17–31.

    Article  CAS  PubMed  Google Scholar 

  8. Hijikata M, Takahashi K, Mishiro S. 1999. Complete circular DNA genome of a TT virus variant (isolate name SANBAN) and 44 partial ORF2 sequences implicating a great degree of diversity beyond genotypes. Virology, 260(1): 17–22.

    Article  CAS  PubMed  Google Scholar 

  9. Horton R M. 1995. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol Biotechnol, 3(2): 93–99.

    Article  CAS  PubMed  Google Scholar 

  10. Hu Z J, Lang Z W, Zhou Y S, et al. 2002. Clinic pathological study on TTV infection in hepatitis of unknown etiology. World J Gastroenterol, 8(2): 288–293.

    CAS  PubMed  Google Scholar 

  11. Jelcic I, Hotz-Wagenblatt A, Hunziker A, et al. 2004. Isolation of multiple TT virus genotypes from spleen biopsy tissue from a Hodgkin’s disease patient: genome reorganization and diversity in the hypervariable region. J Virol, 78(14): 7498–7507.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Liu X, Kong S, Shi M, et al. 2008. Genomic analysis of freshwater cyanophage Pf-WMP3 infecting cyano-bacterium Phormidium foveolarum: the conserved elements for a phage. Microb Ecol, 56(4): 671–680.

    Article  CAS  PubMed  Google Scholar 

  13. Miyata H, Tsunoda H, Kazi A, et al. 1999. Identification of a novel GC-rich 113-nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol, 73(5): 3582–3586.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Mushahwar I K, Erker J C, Muerhoff A S, et al. 1999. Molecular and biophysical characterization of TT virus: evidence for a new virus family infecting humans. Proc Natl Acad Sci USA, 96(6): 3177–3182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Nishizawa T, Okamoto H, Konishi K, et al. 1997. A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun, 241(1): 92–97.

    Article  CAS  PubMed  Google Scholar 

  16. Okamoto H, Nishizawa T, Ukita M. 1999. A novel unenveloped DNA virus (TT virus) associated with acute and chronic non-A to G hepatitis. Intervirology, 42(2–3): 196–204.

    Article  CAS  PubMed  Google Scholar 

  17. Okamoto H, Ukita M, Nishizawa T, et al. 2000. Circular double-stranded forms of TT virus DNA in the liver. J Virol, 74(11): 5161–5167.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Peng Y H, Nishizawa T, Takahashi M, et al. 2002. Analysis of the entire genomes of thirteen TT virus variants classifiable into the fourth and fifth genetic groups, isolated from viremic infants. Arch Virol, 147(1): 21–41.

    Article  CAS  PubMed  Google Scholar 

  19. Sekiya T, Takeya T, Brown E L, et al. 1979. Total synthesis of a tyrosine suppressor transfer RNA gene. XVI. Enzymatic joining to form the total 207-base pair-long DNA. J Biol Chem, 254(13): 5787–5801.

    CAS  PubMed  Google Scholar 

  20. Smith H O, Hutchison C A 3rd, Pfannkoch C, et al. 2003. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci USA, 100(26): 15440–15445.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Stemmer W P, Crameri A, Ha KD, et al. 1995. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene, 164(1): 49–53.

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi K, Iwasa Y, Hijikata M, et al. 2000. Identification of a new human DNA virus (TTV-like mini virus, TLMV) intermediately related to TT virus and chicken anemia virus. Arch Virol, 145(5): 979–993.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi K, Hijikata M, Samokhvalov E I, et al. 2000. Full or near full length nucleotide sequences of TT virus variants (Types SANBAN and YONBAN) and the TT virus-like mini virus. Intervirology, 43(2): 119–123.

    Article  CAS  PubMed  Google Scholar 

  24. Xiong A S, Yao Q H, Peng R H, et al. 2004. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucl Acids Res, 32(12): e98.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Yoshida T, Nagasaki K, Takashima Y, et al. 2008. Ma-LMM01 infecting toxic Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol, 190(5): 1762–1772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengfu Xiao.

Additional information

Foundation item: The Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-EW-Z-3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Z., Xiao, G. Total chemical synthesis, assembly of human torque teno virus genome. Virol. Sin. 26, 181–189 (2011). https://doi.org/10.1007/s12250-011-3187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-011-3187-8

Key words

Navigation