Skip to main content

Advertisement

Log in

Reconstructing Aragonite Saturation State Based on an Empirical Relationship for Northern California

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Ocean acidification is a global phenomenon with highly regional spatial and temporal patterns. In order to address the challenges of future ocean acidification at a regional scale, it is necessary to increase the resolution of spatial and temporal monitoring of the inorganic carbon system beyond what is currently available. One approach is to develop empirical regional models that enable aragonite saturation state to be estimated from existing hydrographic measurements, for which greater spatial coverage and longer time series exist in addition to higher spatial and temporal resolution. We present such a relationship for aragonite saturation state for waters off Northern California based on in situ bottle sampling and instrumental measurements of temperature, salinity, and dissolved oxygen. Application of this relationship to existing datasets (5 to 200 m depth) demonstrates both seasonal and interannual variability in aragonite saturation state. We document a deeper aragonite saturation horizon and higher near surface aragonite saturation state in the summers of 2014 and 2015 (compared with 2010–2013), associated with anomalous warm conditions and decadal scale oscillations. Application of this model to time series data reiterates the direct association between low aragonite saturation state and upwelled waters and highlights the extent to which benthic communities on the Northern California shelf are already exposed to aragonite undersaturated waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19 (6): 716–723. https://doi.org/10.1109/TAC.1974.1100705.

    Article  Google Scholar 

  • Alin, S.R., R.A. Feely, A.G. Dickson, J.M. Hernández-Ayón, L.W. Juranek, M.D. Ohman, and R. Goericke. 2012. Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to Cal COFI hydrographic cruise data (2005–2011). Journal of Geophysical Research: Oceans 117 (5): C05033.

    Google Scholar 

  • Bakun, A. 1990. Global climate change and intensification of coastal ocean upwelling. Science 247 (4939): 198–201. https://doi.org/10.1126/science.247.4939.198.

    Article  CAS  Google Scholar 

  • Bakun, A., B. Black, S.J. Bograd, M. Garcia-Reyes, A. Miller, R. Rykaczewski, and W. Sydeman. 2015. Anticipated effects of climate change on coastal upwelling ecosystems. Current Climate Change Reports 1 (2): 85–93. https://doi.org/10.1007/s40641-015-0008-4.

    Article  Google Scholar 

  • Bograd, S.J., I. Schroeder, N. Sarkar, X. Qiu, W.J. Sydeman, and F.B. Schwing. 2009. Phenology of coastal upwelling in the California Current. Geophysical Research Letters 36 (1): L01602.

    Article  Google Scholar 

  • Bond, N.A., M.F. Cronin, H. Freeland, and N. Mantua. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters 42 (9): 3414–3420. https://doi.org/10.1002/2015GL063306.

    Article  Google Scholar 

  • Broecker, W.S., and T.H. Peng. 1982. Tracers in the Sea. Lamont-Doherty Geological Observatory, Columbia University.

  • Caldeira, K., and M.E. Wickett. 2003. Oceanography: anthropogenic carbon and ocean pH. Nature 425 (6956): 365–365. https://doi.org/10.1038/425365a.

    Article  CAS  Google Scholar 

  • Canadell, J.G., C. Le Quéré, M.R. Raupach, C.B. Field, E.T. Buitenhuis, P. Ciais, T.J. Conway, N.P. Gillett, R.A. Houghton, and G. Marland. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences 104 (47): 18866–18870. https://doi.org/10.1073/pnas.0702737104.

    Article  Google Scholar 

  • Canty, A. and B. Ripley. 2016. Boot: Bootstrap R (S-Plus) functions. R package version 1.3–18.

  • Chan, F., J.A. Barth, C.A. Blanchette, R.H. Byrne, F. Chavez, O. Cheriton, R.A. Feely, G. Friederich, B. Gaylord, T. Gouhier, S. Hacker, T. Hill, G. Hofmann, M.A. McManus, B.A. Menge, K.J. Nielson, A. Russell, E. Sanford, J. Sevadjian, and L. Washburn. 2017. Persistent spatial structuring of coastal ocean acidification in the California Current System. Scientific Reports 7 (1): 2526. https://doi.org/10.1038/s41598-017-02777-y.

    Article  CAS  Google Scholar 

  • Dickson, A.G. 1990. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Research 37: 755–766.

    Article  CAS  Google Scholar 

  • Dickson, A.G., C.L. Sabine and J.R. Christian. 2007. SOP 6b: determination of the pH of sea water using the indicator dye m-cresol purple. Guide to best practices for ocean CO2 measurements. Sidney: North Pacific Marine Science Organization.

  • Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1 (1): 169–192. https://doi.org/10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  • Fabry, V.J., B.A. Seibel, R.A. Feely, and J.C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES Journal of Marine Science: Journal du Conseil 65 (3): 414–432. https://doi.org/10.1093/icesjms/fsn048.

    Article  CAS  Google Scholar 

  • Fassbender, A.J., C.L. Sabine, R.A. Feely, C. Langdon, and C.W. Mordy. 2011. Inorganic carbon dynamics during Northern California coastal upwelling. Continental Shelf Research 31 (11): 1180–1192. https://doi.org/10.1016/j.csr.2011.04.006.

    Article  Google Scholar 

  • Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305 (5682): 362–366. https://doi.org/10.1126/science.1097329.

    Article  CAS  Google Scholar 

  • Feely, R.A., S.C. Doney, and S.R. Cooley. 2009. Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22 (4): 36–47. https://doi.org/10.5670/oceanog.2009.95.

    Article  Google Scholar 

  • Feely, R.A., C.L. Sabine, J.M. Hernandez-Ayon, D. Ianson, and B. Hales. 2008. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320 (5882): 1490–1492. https://doi.org/10.1126/science.1155676.

    Article  CAS  Google Scholar 

  • Feely, R.A., S.R. Alin, B. Carter, N. Bednarsek, B. Hales, F. Chan, T.M. Hill, B. Gaylord, E. Sanford, R.H. Byrne, C.L. Sabine, D. Greeley, and L. Juranek. 2016. Chemical and biological impacts of ocean acidification along the west coast of North America: Estuarine. Coastal and Shelf. Science 183: 260–270. https://doi.org/10.1016/j.ecss.2016.08.043.

    Article  CAS  Google Scholar 

  • García-Reyes, M., and J. Largier. 2010. Observations of increased wind-driven coastal upwelling off Central California. Journal of Geophysical Research 115: C04011. https://doi.org/10.1029/2009JC005576.

    Article  Google Scholar 

  • García-Reyes, M., and J.L. Largier. 2012. Seasonality of coastal upwelling off central and northern California: New insights, including temporal and spatial variability. Journal of Geophysical Research Oceans 117 (3): C03028.

    Google Scholar 

  • García-Reyes, M., W.J. Sydeman, D.S. Schoeman, R.R. Rykaczewski, B.A. Black, A.J. Smit, and S.J. Bograd. 2015. Under pressure: climate change, upwelling, and eastern boundary upwelling ecosystems. Frontiers in Marine Science 2: 109.

    Article  Google Scholar 

  • Gay, P.S., and T.K. Chereskin. 2009. Mean structure and seasonal vari- ability of the poleward undercurrent off southern California. Journal of Geophysical Research 114: C02007. https://doi.org/10.1029/2008JC004886.

    Article  Google Scholar 

  • Gentemann, C.L., M.R. Fewings, and M. Garcia-Reyes. 2017. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northwest Pacific marine heat wave. Geophysical Research Letters 4 (1): 312–319.

    Article  Google Scholar 

  • Gruber, N., C. Hauri, Z. Lachkar, D. Loher, T.L. Frölicher, and G. Plattner. 2012. Rapid progression of ocean acidification in the California Current System. Science 337 (6091): 220–223. https://doi.org/10.1126/science.1216773.

    Article  CAS  Google Scholar 

  • Hales, B., T. Takahashi, and L. Bandstra. 2005. Atmospheric CO2 uptake by a coastal upwelling system. Global Biogeochemical Cycles 19: GB1009.

    Article  Google Scholar 

  • Halle, C.M., and J.L. Largier. 2011. Surface circulation downstream of the Point Arena upwelling center. Continental Shelf Research 31 (12): 1260–1272. https://doi.org/10.1016/j.csr.2011.04.007.

    Article  Google Scholar 

  • Hauri, C., N. Gruber, M. Vogt, S.C. Doney, R.A. Feely, Z. Lachkar, A. Leinweber, A.M.P. McDonnell, M. Munnich, and G.K. Plattner. 2013. Spatiotemporal variability and long-term trends of ocean acidification in the California Current System. Biogeosciences 10 (1): 193–216. https://doi.org/10.5194/bg-10-193-2013.

    Article  Google Scholar 

  • Harris, K.E., M.D. DeGrandpre, and B. Hales. 2013. Aragonite saturation state dynamics in a coastal upwelling zone. Geophysical Research Letters 40 (11): 2720–2725. https://doi.org/10.1002/grl.50460.

    Article  CAS  Google Scholar 

  • Hickey, B.M. 1979. The California current system—Hypotheses and facts. Progress in Oceanography 8e(4): 191–279.

    Article  Google Scholar 

  • Hickey, B.M. 1998. Coastal oceanography of western North America from the tip of Baja California to Vancouver Island. In The global Coastal Ocean: Regional studies and syntheses, ed. A.R. Robinson and K.H. Brink, vol. vol. 11. New York: Wiley.

    Google Scholar 

  • Hofmann, G.E., J.E. Smith, K.S. Johnson, U. Send, L.A. Levin, F. Micheli, A. Paytan, N.N. Price, B. Peterson, Y. Takeshita, P.G. Matson, E.D. Crook, K.J. Kroeker, M.C. Gambi, E.B. Rivest, C.A. Frieder, P.C. Yu, and T.R. Martz. 2011. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS One 6 (12): e28983. https://doi.org/10.1371/journal.pone.0028983.

    Article  CAS  Google Scholar 

  • Huyer, A. 1998. Coastal upwelling in the California Current System. Progress in Oceanography 12 (3): 259–284. https://doi.org/10.1016/0079-6611(83)90010-1.

    Article  Google Scholar 

  • Huyer, A., J. Barth, P. Kosro, R. Shearman, and R. Smith. 1998. Upper- Ocean water mass characteristics of the California current, summer 1993. Deep Sea Research Part II 45 (8–9): 1411–1442.

    Article  Google Scholar 

  • Jacox, M.G., J. Fiechter, A.M. Moore, and C.A. Edwards. 2015. ENSO and the California Current coastal upwelling response. Journal of Geophysical Research: Oceans 120 (3): 1691–1702. https://doi.org/10.1002/2014JC010650.

    Article  Google Scholar 

  • Juranek, L.W., R.A. Feely, W.T. Peterson, S.R. Alin, B. Hales, K. Lee, C.L. Sabine, and J. Peterson. 2009. A novel method for determination of aragonite saturation state on the continental shelf of central Oregon using multi-parameter relationships with hydrographic data. Geophysical Research Letters 36 (24): L24601. https://doi.org/10.1029/2009GL040778.

    Article  CAS  Google Scholar 

  • Kaplan, D.M., and J.L. Largier. 2006. HF radar-derived origin and destination of surface waters off Bodega Bay, California. Deep-Sea Research II 53 (25-26): 2906–2930. https://doi.org/10.1016/j.dsr2.2006.07.012.

    Article  Google Scholar 

  • Kelly, M.W., J.L. Padilla- Gamiño, and G.E. Hofmann. 2013. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Global Change Biology 19 (8): 2536–2546. https://doi.org/10.1111/gcb.12251.

    Article  Google Scholar 

  • Kleypas, J.A., R.W. Buddemeier, D. Archer, J.-P. Gattuso, C. Langdon, and B.N. Opdyke. 1999. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284 (5411): 118–120. https://doi.org/10.1126/science.284.5411.118.

    Article  CAS  Google Scholar 

  • Largier, J.L., B.A. Magnell, and C.D. Winant. 1993. Subtidal circulation over the Northern California shelf. Journal of Geophysical Research 98 (C10): 18147–18179. https://doi.org/10.1029/93JC01074.

    Article  Google Scholar 

  • Largier, J.L., C.A. Lawrence, M. Roughan, D.M. Kaplan, E.P. Dever, C.E. Dorman, R.M. Kudela, S.M. Bollens, F.P. Wilkerson, R.C. Dugdale, L.W. Botsford, N. Garfield, B. Kuebel-Cervantes, and D. Koracin. 2006. WEST: a Northern California study of the role of wind-driven transport in the productivity of coastal plankton communities. Deep Sea Research II 53 (25–26): 2833–2849. https://doi.org/10.1016/j.dsr2.2006.08.018.

    Article  Google Scholar 

  • Lee, M.Y., C.C. Hong, and H.H. Hsu. 2015. Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter. Geophysical Research Letters 42 (5): 1612–1618. https://doi.org/10.1002/2014GL062956.

    Article  Google Scholar 

  • Leising, A.W., I.D. Schroeder, S.J. Bograd, J. Abell, R. Durazo, G. Gaxiola-Castro, E.P. Bjorkstedt, J. Field, K. Sakuma, and R.R. Robertson. 2015. State of the California Current 2014-15: Impacts of the Warm-Water “Blob.” CalCOFI Report, 56:31–68.

  • Lynn, R.J., and J.J. Simpson. 1987. The California Current System: the seasonal variability of its physical characteristics. Journal of Geophysical Research: Oceans 92 (12): 12947–12966. https://doi.org/10.1029/JC092iC12p12947.

    Article  Google Scholar 

  • Meinvielle, M., and G.C. Johnson. 2013. Decadal water-property trends in the California Undercurrent, with implications for ocean acidification. Journal of Geophysical Research: Oceans 118 (12): 6687–6703. https://doi.org/10.1002/2013JC009299.

    Article  Google Scholar 

  • Millero, F.J. 2010. Carbonate constants for estuarine waters. Marine and Freshwater Research 61: 139–142.

    Article  CAS  Google Scholar 

  • Mote, P.W., and N.J. Manuta. 2002. Coastal upwelling in a warmer future. Geophysical Research Letters 29 (23): 2138–2142.

    Article  Google Scholar 

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.-F. Weirig, Y. Yamanaka, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437 (7059): 681–686. https://doi.org/10.1038/nature04095.

    Article  CAS  Google Scholar 

  • Parker, L., P.M. Ross, and W.A. O’Connor. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158 (3): 689–697. https://doi.org/10.1007/s00227-010-1592-4.

    Article  Google Scholar 

  • Paquin, A. 2012. The green thread: seasonal and event scale forcing of phytoplankton abundance and taxonomic composition in the surfzone of open-coast, rocky shore. MS Thesis. Sonoma State University. http://hdl.handle.net/10211.3/121491

  • Pennington, T.J., and F.P. Chavez. 2000. Seasonal fluctuations of temperature, salinity, nitrate, chlorophyll and primary production at station H3/M1 over 1989–1996 in Monterey Bay, California. Deep Sea Research Part II 47 (5–6): 947–973.

    Article  CAS  Google Scholar 

  • Pickard, G.L. 1964. Descriptive physical oceanography. New York: Pergamon.

    Google Scholar 

  • Pierce, S.D., J.A. Barth, R.K. Shearman, and A.Y. Erofeev. 2012. Declining oxygen in the Northeast Pacific. Journal of Physical Oceanography 42: 495–501.

    Article  Google Scholar 

  • R Core Team. 2013. A language and environment for statistical computing. Vienna: Austria.

    Google Scholar 

  • Reid, J.L., G.I. Roden, and J.G. Wyllie. 1958. Studies of the California current system, CalCOFI Prog. Rep. 7–1-56 to 1–1-58, 27–56. Sacramento: Department of Fish and Game.

    Google Scholar 

  • Robbins, L.L., M.E. Hansen, J.A. Kleypas and S.C. Meylan. 2010. CO2calc—a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). Reston: U.S. Geological Survey.

  • Sabine, C.L., R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C. Wong, D.W. Wallace, and B. Tilbrook. 2004. The oceanic sink for anthropogenic CO2. Science 305 (5682): 367–371. https://doi.org/10.1126/science.1097403.

    Article  CAS  Google Scholar 

  • Sabine, C.L., and R.A. Feely. 2007. The oceanic sink for carbon dioxide. In Greenhouse gas sinks, ed. D. Reay et al., 31–49. Oxfordshire, U. K.: CABI. https://doi.org/10.1079/9781845931896.0031.

    Chapter  Google Scholar 

  • Send, U., R.C. Beardsley, and C.D. Winant. 1987. Relaxation from upwelling in the Coastal Ocean Dynamics Experiment. Journal of Geophysical Research 92 (C2): 1683–1698. https://doi.org/10.1029/JC092iC02p01683.

    Article  Google Scholar 

  • Scannell, H.A., A.J. Pershing, M.A. Alexander, A.C. Thomas, and K.E. Mills. 2016. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophysical Research Letters 43 (5): 2069–2076. https://doi.org/10.1002/2015GL067308.

    Article  Google Scholar 

  • Snyder, M.A., L.C. Sloan, N.S. Diffenbaugh, and J.L. Bell. 2003. Future climate change and upwelling in the California Current. Geophysical Research Letters 30 (15): 1823.

    Article  Google Scholar 

  • Stramma, L., T. Fischer, D.S. Grundle, G. Krahmann, H.W. Bange, and C.A. Marandino. 2016. Transition to El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Science 12 (4): 861–873. https://doi.org/10.5194/os-12-861-2016.

    Article  Google Scholar 

  • Sverdrup, H.U., R.H. Fleming, and M.W. Johnson. 1942. The oceans, their physics, chemistry, and general biology. New York: Prentice Hall.

    Google Scholar 

  • Sydeman, W., M. García-Reyes, D. Schoeman, R. Rykaczewski, S. Thompson, B. Black, and S. Bograd. 2014. Climate change and wind intensification in coastal upwelling ecosystems. Science 345 (6192): 77–80. https://doi.org/10.1126/science.1251635.

    Article  CAS  Google Scholar 

  • Thomson, R.E., and M.V. Krassovski. 2010. Poleward reach of the California undercurrent extension. Journal of Geophysical Research 115: C09027. https://doi.org/10.1029/2010JC006280.

    Article  Google Scholar 

  • Varela, R., I. Álvarez, F. Santos, M. deCastro, and M. Gómez-Gesteira. 2015. Has upwelling strengthened along worldwide coasts over 1982–2010? Scientific Reports 5 (1): 10016. https://doi.org/10.1038/srep10016.

    Article  CAS  Google Scholar 

  • Walther, K., K. Anger, and H.-O. Pörtner. 2010. Effects of ocean acidification and warming on the larval development of the spider crab Hyas araneus from different latitudes (54 vs. 79 N). Marine Ecology Progress Series 417: 159–170. https://doi.org/10.3354/meps08807.

    Article  Google Scholar 

  • Wang, D., T.C. Gouhier, B.A. Menge, and A.R. Ganguly. 2015. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518 (7539): 390–394. https://doi.org/10.1038/nature14235.

    Article  CAS  Google Scholar 

  • Whitney, F.A. 2015. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophysical Research Letters 42 (2): 428–431. https://doi.org/10.1002/2014GL062634.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Dann, M.G. Susner, D. Lipski, J. Roletto, and the crew of the R/V Fulmar for assistance in the field and A. Ninokawa and J. Hosfelt for laboratory support. The authors would also like to thank E. Sanford, J. Hower, M. Elliott, and N. Karnovsky.

All oceanographic data are available upon request from the Bodega Marine Laboratory (Bodega Line/BOON) and Point Blue (ACCESS: http://www.pointblue.org/datasharing).

Funding

This work was supported by the National Science Foundation OCE No. 144451 to TMH and California Sea Grant R/HCME-04 to JLL. Support for BOON and the Bodega Line data was received from UC Davis, Sonoma County Water Agency, and the Central and Northern California Ocean Observing System (CeNCOOS).

This research was supported in part by the Applied California Current Ecosystem Studies (ACCESS) partnership, a continuing collaboration between Point Blue Conservation Science, the Greater Farallones National Marine Sanctuary, and Cordell Bank National Marine Sanctuary. The authors thank the Angell Family Foundation, Bently Foundation, Bonnel Cove Foundation, Boring Family Foundation, Elinor Paterson Baker Trust, Faucett Catalyst Fund, Firedoll Foundation, Hellman Family Foundation, Moore Family Foundation, Pacific Life Foundation, Susie Tompkins Buell Foundation, Wendy P. McCaw Foundation, Thelma Doelger Trust, and the many Point Blue donors who have helped fund ACCESS work over the years. This is Point Blue Conservation Science contribution number 2106 and a contribution of Bodega Marine Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine V. Davis.

Additional information

Communicated by David Reide Corbett

Electronic Supplementary Material

ESM 1

(PDF 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, C.V., Hewett, K., Hill, T.M. et al. Reconstructing Aragonite Saturation State Based on an Empirical Relationship for Northern California. Estuaries and Coasts 41, 2056–2069 (2018). https://doi.org/10.1007/s12237-018-0372-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0372-0

Keywords

Navigation