Skip to main content
Log in

AtCBF1 Overexpression Confers Tolerance to High Light Conditions at Warm Temperatures in Potato Plants

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

We characterized transcriptional responses of potato plants to multiple abiotic stresses and used this information to identify potential mechanisms through which over-expression of the stress related transcription factor CBF1 from Arabidopsis thaliana (AtCBF1) confers multiple stress tolerance. Most transcriptional changes were specific to each condition, but genes involved in phenyl-propanoid biosynthesis were affected by all abiotic stresses evaluated. Interestingly, over-expression of AtCBF1 in potato plants not only conferred tolerance to low temperatures, as previously reported, but also to high-light conditions at 22 °C, suggesting that it confers multiple stress tolerance by enhancing the ability of plants to cope with an excess of radiant energy. Finally, we found that transcriptional changes triggered by abiotic stress were much larger than those resulting from AtCBF1 over-expression in potato, revealing that overexpression of an heterologous transcription factor causes minor alterations in the plant transcriptome in comparison to transcriptional changes triggered by abiotic stresses.

Resumen

Caracterizamos respuestas transcripcionales de plantas de papa a múltiples estreses abióticos y utilizamos esta información para identificar mecanismos potenciales a través de los cuales la sobreexpresión del factor de transcripción CBF1 relacionado con agobio de Arabidopsis thaliana (AtCBF1) confiere tolerancia múltiple al estrés. La mayoría de los cambios transcripcionales fueron específicos para cada condición, pero se afectaron los genes involucrados en la biosíntesis de fenil-propanoides por todos los estreses abióticos evaluados. Interesantemente, la sobreexpresión del AtCBF1 en plantas de papa no solo confirieron tolerancia a bajas temperaturas, como se ha reportado previamente, sino también a condiciones de alta luminosidad a 22 °C, lo que sugiere múltiple tolerancia al estrés mediante el aumento de la habilidad de las plantas para hacer frente a un exceso de energía radiante. Finalmente, encontramos que los cambios transcripcionales disparados por el agobio abiótico fueron mayores que aquellos que resultaron de la sobreexpresión de AtCBF1 en papa, revelando que la sobreexpresión de un factor heterólogo de transcripción causa alteraciones menores en el transcriptoma de la planta en comparación a cambios transcripcionales disparados por estreses abióticos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdeen, A., J. Schnell, and B. Miki. 2010. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 11: 69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ariel, F.D., P.A. Manavella, C.A. Dezar, and R.L. Chan. 2007. The true story of the HD-Zip family. Trends in Plant Science 12: 419–426.

    Article  CAS  PubMed  Google Scholar 

  • Bagnaresi, P., A. Moschella, O. Beretta, F. Vitulli, P. Ranalli, and P. Perata. 2008. Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics 9: 176.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker, S.S., K.S. Wilhelm, and M.F. Thomashow. 1994. The 5′-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Molecular Biology 24: 701–713.

    Article  CAS  PubMed  Google Scholar 

  • Beaujean, A., R.S. Sangwan, A. Ledercadonnel, and B.S. Sangwan-Norreel. 1998. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. Journal of Experimental Botany 49: 1589–1595.

    Article  CAS  Google Scholar 

  • Behnam, B., A. Kikuchi, S. Yamanaka, M. Kasuga, K. Yamaguchi-Shinozaki, and K. Watanabe. 2006. The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnology 23: 169–177.

    Article  CAS  Google Scholar 

  • Behnam, B., A. Kikuchi, F. Celebi-Toprak, M. Kasuga, K. Yamaguchi-Shinozaki, and K. Watanabe. 2007. Arabidopsis rd29A::DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Reports 26: 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  • Ben Saad, R., N. Zouari, W. Ben Ramdhan, J. Azaza, D. Meynard, E. Guiderdoni, and A. Hassairi. 2010. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger AISAP gene isolated from the halophyte grass Aeluropus littoralis. Plant Molecular Biology 72: 171–190.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B Methodological 57: 289–300.

    Google Scholar 

  • Bohnert, H.J., D.E. Nelson, and R.G. Jensen. 1995. Adaptations to environmental stresses. The Plant Cell 7: 1099.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carre, I.A., and J.Y. Kim. 2002. MYB transcription factors in the Arabidopsis circadian clock. Journal of Experimental Botany 53: 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, R.F., M.L. Campos, and R.A. Acevedo. 2011. The role of phytochrome in stress tolerance. Journal of Integrative Plant Biology 53: 920–929.

    Article  CAS  PubMed  Google Scholar 

  • Carvallo, M.A., M.T. Pino, Z. Jeknic, C. Zou, C.J. Doherty, S.H. Shiu, T.H. Chen, and M.F. Thomashow. 2011. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. Journal of Experimental Botany 62: 3807–3819.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, H.-H., and P.H. Li. 1980. Characteristics of cold acclimation and deacclimation in tuber-bearing Solanum species. Plant Physiology 65: 1146–1148.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craig, W., M. Tepfer, G. Degrassi, and D. Ripandelli. 2008. An overview of general features of risk assessments of genetically modified crops. Euphytica 164: 853–880.

    Article  Google Scholar 

  • Cushman, J.C., and H.J. Bohnert. 2000. Genomic approaches to plant stress tolerance. Current Opinion in Plant Biology 3: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, P. 2009. VEGAN, a package of R functions for community ecology. Journal of Vegetation Science 14: 927–930.

    Article  Google Scholar 

  • Dong, M.A., E.M. Farre, and M.F. Thomashow. 2011. CIRCADIAN CLOCK-ASSOCIATED 1 and LATE ELONGATED HYPOCOTYL regulate expression of the C-REPEAT BINDING FACTOR (CBF) pathway in Arabidopsis. Proceedings of the National Academy of Sciences 108: 7241–7246.

    Article  CAS  Google Scholar 

  • Dou, H., K. Xv, Q. Meng, G. Li, and X. Yang. 2015. Potato plants ectopically expressing Arabidopsis thaliana CBF3 exhibit enhanced tolerance to high-temperature stress. Plant, Cell & Environment 38: 61–72.

    Article  CAS  Google Scholar 

  • Fankhauser, C., K.C. Yeh, J.C. Lagarias, H. Zhang, T.D. Elich, and J. Chory. 1999. PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis. Science 284: 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  • Fiorani, F., A.L. Umbach, and J.N. Siedow. 2005. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiology 139: 1795–1805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foyer, C.H., and J.F. Allen. 2003. Lessons from redox signaling in plants. Antioxidants & Redox Signaling 5: 3–5.

    Article  CAS  Google Scholar 

  • Frick, G., Q. Su, K. Apel, and G.A. Armstrong. 2003. An Arabidopsis porB porC double mutant lacking light-dependent NADPH:protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested. The Plant Journal 35: 141–153.

    Article  CAS  PubMed  Google Scholar 

  • Gangadhar, B.H., J.W. Yu, K. Sajeesh, and S.W. Park. 2014. A systematic exploration of high-temperature stress-responsive genes in potato using large-scale yeast functional screening. Molecular Genetics and Genomics 289: 185–201.

    Article  CAS  PubMed  Google Scholar 

  • Gentleman, R., V. Carey, D. Bates, B. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. Rossini, G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Yang, and J. Zhang. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology 5: R80.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gilmour, S., S. Fowler, and M. Thomashow. 2004. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Molecular Biology 54: 767–781.

    Article  CAS  PubMed  Google Scholar 

  • Golldack, D., I. Lüking, and O. Yang. 2011. Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Reports 30: 1383–1391.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.D., W.L. Morris, L.J. Ducreux, J.A. Morris, M. Usman, S.R. Verrall, J. Fuller, C.G. Simpson, R. Zhang, P.E. Hedley, and M.A. Taylor. 2014. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant, Cell and Environment 37: 439–450.

    Article  CAS  PubMed  Google Scholar 

  • Hsieh, T.-H., J.-t. Lee, Charng Y-y, and M.-T. Chan. 2002a. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiology 130: 618–626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh, T.-H., J.-T. Lee, P.-T. Yang, L.-H. Chiu, Charng Y-y, Y.-C. Wang, and M.-T. Chan. 2002b. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology 129: 1086–1094.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, J., M.-M. Wang, Y. Jiang, Y.-M. Bao, X. Huang, H. Sun, D.-Q. Xu, H.-X. Lan, and H.-S. Zhang. 2008. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance. Gene 420: 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen, K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger, and M.F. Thomashow. 1998. Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104–106.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M.S. 2011. The role of DREB transcription factors in abiotic stress tolerance of plants. Biotechnology and Biotechnology Equipment 25: 2433–2442.

    Article  CAS  Google Scholar 

  • Khush, G.S. 2001. Challenges for meeting the global food and nutrient needs in the new millennium. Proceedings of the Nutrition Society 60: 15–26.

    Article  CAS  PubMed  Google Scholar 

  • Kondrak, M., F. Marincs, F. Antal, Z. Juhasz, and Z. Banfalvi. 2012. Effects of yeast trehalose-6-phosphate synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress conditions. BMC Plant Biology 12: 74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, Q., M. Kasuga, Y. Sakuma, H. Abe, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391–1406.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu, H., X. Yu, K. Li, J. Klejnot, H. Yang, D. Lisiero, and C. Lin. 2008. Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1535–1539.

    Article  CAS  PubMed  Google Scholar 

  • Mancinelli, A.L., F. Rossi, and A. Moroni. 1991. Cryptochrome, phytochrome, and anthocyanin production. Plant Physiology 96: 1079–1085.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Moran, R., and D. Porath. 1980. Chlorophyll determination in intact tissues using N,N-Dimethylformamide. Plant Physiology 65: 478–479.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Movahedi, S., B.E. Sayed Tabatabaei, H. Alizade, C. Ghobadi, A. Yamchi, and G. Khaksar. 2012. Constitutive expression of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biologia Plantarum 56: 37–42.

    Article  CAS  Google Scholar 

  • Nakashima, K., H. Takasaki, J. Mizoi, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819: 97–103.

    Article  CAS  Google Scholar 

  • Nicot, N., J.-F. Hausman, L. Hoffmann, and D. Evers. 2005. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. Journal of Experimental Botany 56: 2907–2914.

    Article  CAS  PubMed  Google Scholar 

  • Pavlidis, P., and W.S. Noble. 2001. Analysis of strain and regional variation in gene expression in mouse brain. Genome Biology 2: 0042.0041–0042.0015.

    Article  Google Scholar 

  • Payyavula, R., D. Navarre, J. Kuhl, A. Pantoja, and S. Pillai. 2012. Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biology 12: 39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pennycooke, J., H. Cheng, S. Roberts, Q. Yang, S. Rhee, and E. Stockinger. 2008. The low temperature-responsive, SolanumCBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Molecular Biology 67: 483–497.

    Article  CAS  PubMed  Google Scholar 

  • Pino, M.-T., J.S. Skinner, E.-J. Park, Z. Jeknić, P.M. Hayes, M.F. Thomashow, and T.H.H. Chen. 2007. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnology Journal 5: 591–604.

    Article  CAS  PubMed  Google Scholar 

  • Pino, M.-T., J.S. Skinner, Z. JekniĆ, P.M. Hayes, A.H. Soeldner, M.F. Thomashow, and T.H.H. Chen. 2008. Ectopic AtCBF1 over-expression enhances freezing tolerance and induces cold acclimation-associated physiological modifications in potato. Plant, Cell & Environment 31: 393–406.

    Article  CAS  Google Scholar 

  • Preuss, S.B., R. Meister, Q. Xu, C.P. Urwin, F.A. Tripodi, S.E. Screen, V.S. Anil, S. Zhu, J.A. Morrell, G. Liu, O.J. Ratcliffe, T.L. Reuber, R. Khanna, B.S. Goldman, E. Bell, T.E. Ziegler, A.L. McClerren, T.G. Ruff, and M.E. Petracek. 2012. Expression of the Arabidopsis thaliana BBX32 gene in soybean increases grain yield. PLoS ONE 7: e30717.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin, F., K. Shinozaki, and K. Yamaguchi-Shinozaki. 2011. Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant and Cell Physiology 52: 1569–1582.

    Article  CAS  PubMed  Google Scholar 

  • Reiss, P.T., M.H. Stevens, Z. Shehzad, E. Petkova, and M.P. Milham. 2010. On distance-based permutation tests for between-group comparisons. Biometrics 66: 636–643.

    Article  PubMed  Google Scholar 

  • Rensink, W., A. Hart, J. Liu, S. Ouyang, V. Zismann, and C.R. Buell. 2005a. Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome 48: 598–605.

    Article  PubMed  Google Scholar 

  • Rensink, W.A., S. Iobst, A. Hart, S. Stegalkina, J. Liu, and C.R. Buell. 2005b. Gene expression profiling of potato responses to cold, heat, and salt stress. Functional and Integrative Genomics 5: 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Ricroch, A.E., J.B. Berge, and M. Kuntz. 2011. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiology 155: 1752–1761.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rosegrant, M.W., and S.A. Cline. 2003. Global food security: challenges and policies. Science 302: 1917–1919.

    Article  CAS  PubMed  Google Scholar 

  • Schaffer, R., N. Ramsay, A. Samach, S. Corden, J. Putterill, I.A. Carre, and G. Coupland. 1998. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229.

    Article  CAS  PubMed  Google Scholar 

  • Shah, D.M., R.B. Horsch, H.J. Klee, G.M. Kishore, J.A. Winter, N.E. Tumer, C.M. Hironaka, P.R. Sanders, C.S. Gasser, S. Aykent, N.R. Siegel, S.G. Rogers, and R.T. Fraley. 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–481.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki, K., and K. Yamaguchi-Shinozaki. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3: 217–223.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki, K., K. Yamaguchi-Shinozaki, and M. Seki. 2003. Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6: 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Smyth, G.K. 2004. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3: 3.

    Article  Google Scholar 

  • Somersalo, S., and G.H. Krause. 1989. Photoinhibition at chilling temperature. Planta 177: 409–416.

    Article  CAS  PubMed  Google Scholar 

  • Steyn, W.J., S.J.E. Wand, D.M. Holcroft, and G. Jacobs. 2002. Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytologist 155: 349–361.

    Article  CAS  Google Scholar 

  • Storey, J.D., and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences of the United States of America 100: 9440–9445.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thomashow, M.F. 2001. So what’s new in the field of plant cold acclimation? Lots! Plant Physiology 125: 89–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418: 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Uno, Y., T. Furihata, H. Abe, R. Yoshida, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2000. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of the National Academy of Sciences of the United States of America 97: 11632–11637.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaeck, M., A. Reynaerts, H. Höfte, S. Jansens, M. de Beuckeleer, C. Dean, M. Zabeau, M.V. Montagu, and J. Leemans. 1987. Transgenic plants protected from insect attack. Nature 328: 33–37.

    Article  CAS  Google Scholar 

  • Vasquez-Robinet, C., S.P. Mane, A.V. Ulanov, J.I. Watkinson, V.K. Stromberg, D. De Koeyer, R. Schafleitner, D.B. Willmot, M. Bonierbale, H.J. Bohnert, and R. Grene. 2008. Physiological and molecular adaptations to drought in Andean potato genotypes. Journal of Experimental Botany 59: 2109–2123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verslues, P., M. Agarwal, S. Katiyar-Agarwal, J. Zhu, and J.-K. Zhu. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. The Plant Journal 45: 523–539.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., and K. Shinozaki. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu, X., H. Liu, J. Klejnot, and C. Lin. 2010. The cryptochrome blue light receptors. Arabidopsis Book 8: e0135.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, X., S.G. Fowler, H. Cheng, Y. Lou, S. Rhee, E.J. Stockinger, and M.F. Tomashow. 2004. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant <i>Arabidopsis</i> The Plant Journal 39: 905–919.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N., B. Liu, C. Ma, G. Zhang, J. Chang, H. Si, and D. Wang. 2014. Transcriptome characterization and sequencing-based identification of drought-responsive genes in potato. Molecular Biology Reports 41: 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.-K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 247–273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a fellowship from the Argentinean National Research Council to L.S., and by grants from Agencia Nacional de Promoción Científica y Tecnológica to M.J.Y.

Authors’ Contributions

LS performed most of the experiments in this study with technical assistance from EP, MLR, GGS. AC performed the statistical analysis. LS, CEH, RJS, JJC and MJY provided input in designing experiments and in the preparation of the manuscript and LS, CEH and MJY wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo J. Yanovsky.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Founding Information

These experiments were funded by the Argentinean National Research Council (CONICET).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Complete lists of genes regulated by drought, low temperature and high-light stress in potato plants. Tab1. Genes up-regulated under drought stress. Tab2. Genes down-regulated under drought stress. Tab3. Genes up-regulated under low temperature stress. Tab4. Genes down-regulated under low temperature stress. Tab5. Genes up-regulated under high light stress. Tab6. Genes down-regulated under high light stress. (XLS 1118 kb)

ESM 2

Examples of genes regulated under drought stress. (a) Up-regulated genes. (b) Down-regulated genes (GIF 35 kb)

High resolution image (TIFF 12630 kb)

ESM 3

Examples of genes up-regulated under both drought and low temperature stresses (GIF 21 kb)

High resolution image (TIFF 7238 kb)

ESM 4

Contrasting regulation of an aquaporin gene by drought and low temperatures (GIF 15 kb)

High resolution image (TIFF 5142 kb)

ESM 5

Expression of circadian clock associated genes from the MYB family of transcription factors under low temperature, drought and high light (GIF 21 kb)

High resolution image (TIFF 4902 kb)

ESM 6

Regulation of genes involved in redox homeostasis by high light stress (GIF 20 kb)

High resolution image (TIFF 7404 kb)

ESM 7

Down regulation of genes associated with the control of cell elongation and leaf area in response to abiotic stress (GIF 23 kb)

High resolution image (TIFF 5967 kb)

ESM 8

Regulation of CIB1 expression by abiotic stress in potato (GIF 13 kb)

High resolution image (TIFF 4989 kb)

ESM 9

Phenotypic characterization of AtCBF1-OX transgenic potato plants. (a) Total height and 3rd internode length of two independent AtCBF1-OX transgenic lines compared to wild-type potato plants. (b) Tuber yield. In (a) data are mean ± S.E. of six replicates. In (b) data are mean ± S.E. of nine replicates. * indicates significant differences between treatments (p<0.05). (GIF 47 kb)

High resolution image (TIFF 10013 kb)

ESM 10

Cold stress tolerance in AtCBF1-OX transgenic potato plants. (a) Fv/Fm measured in the leaves of WT and AtCBF1-OX transgenic plants under control and low temperature conditions. Data are mean ± S.E. of three replicates. Different letters indicate statistically significant differences (p<0.05). (b) Representative leaf of WT and AtCBF1-OX transgenic potato plants after prolonged cold exposure. (c) WT and AtCBF1-OX transgenic plants exposed for one week to low temperature conditions. (GIF 139 kb)

High resolution image (TIFF 18269 kb)

ESM 11

Tolerance to drought stress in AtCBF1-OX transgenic potato plants. (a) Water loss in detached leaves of WT and AtCBF1-OX plants during three days. (b) Leaf transpiration rate during drought treatment. (c) Transpiration rate measured as water loss from plants grown in pots during a drought treatment. (d) Photograph of WT and AtCBF1OX transgenic potato plants after ten days of no water supply. (e) Fv/Fm after ten days of drought. (f) Photosynthesis rate and chlorophyll content of stress treated relative to control plants after 10 days of drought. Data in (a) are mean ± S.E. of twelve leaves. Data in (b), (c) and (d) are mean ± S.E. of three plants. Data in F are mean ± S.E. of four plants. * indicates significant differences between treatments (p<0.05). (GIF 114 kb)

High resolution image (TIFF 17515 kb)

ESM 12

Genes regulated by AtCBF1 under control conditions and in WT plants under stress conditions. Tab1. Genes up-regulated by AtCBF1 under control growth conditions. Tab2. Genes down-regulated by AtCBF1 under control growth conditions. Tab3. Genes up-regulated by AtCBF1 under control growth conditions and under any of the abiotic stresses analyzed before. Tab4. Genes down-regulated by AtCBF1 under control growth conditions and by any of the abiotic stresses analyzed before. (XLS 149 kb)

ESM 13

Expression of cold regulated genes in WT and AtCBF1-OX transgenic plants under control conditions (GIF 17 kb)

High resolution image (TIFF 5241 kb)

ESM 14

Expression of PORB in WT and AtCBF1-OX transgenic plants in response to high light stress (GIF 18 kb)

High resolution image (TIFF 5168 kb)

ESM 15

Template Matching Analysis. Number of genes significantly correlated to each one of these templates, as a function of the considered significance level. For any given statistical cutoff level, light stress treatments committed the largest set of genes (~20% bigger than the one induced by temperature stress, and up to 300% bigger than the one associated to genetic background differences). (GIF 35 kb)

High resolution image (TIFF 7982 kb)

ESM 16

Multi Response Permutation Procedure for gene expression analysis. MRPP results obtained for the low temperature and high-light stress conditions are reported in the first and second row respectively. A, δ, <δ>, and pv, are the effect-size, the observed and expected weighted mean of intra group distances, and the associated p-value, respectively. (XLS 25 kb)

ESM 17

Lists of genes regulated by AtCBF1-OX under control or abiotic stress conditions in potato plants. 1 indicates regulated by the treatment being evaluated, 0 indicates not regulated by the treatment being evaluated. Tab1. Genes regulated by temperature stress but not by light or genetic background. Tab2. Genes regulated by light but not by low temperature conditions or genetic background. Tab3. Genes regulated by genetic background but not by low temperatures or high-light stress. Tab4. Genes regulated by low temperatures and by high-light but not by genetic background. Tab5. Genes regulated by temperature stress and genetic background, but not by high-light. Tab6. Genes regulated by genetic background and by high-light, but not by low temperatures. Tab7. Genes regulated by genetic background, high-light and low temperatures. (XLS 1621 kb)

ESM 18

Primers used for qRT-PCR validation of microarray data (XLS 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Storani, L., Hernando, C.E., Staneloni, R.J. et al. AtCBF1 Overexpression Confers Tolerance to High Light Conditions at Warm Temperatures in Potato Plants. Am. J. Potato Res. 92, 619–635 (2015). https://doi.org/10.1007/s12230-015-9476-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9476-2

Keywords

Navigation