Skip to main content
Log in

An Overview on Orchids and their Interaction with Endophytes

  • Review
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Orchids, being one of nature’s most magnificent as well as abundant plant species, are often a bit of an enigma because their seeds lack endosperm and rely on endophytes for seedlings, development, as well as evolution. Orchids are valued by ecologists as well as the community at large for their decorative, therapeutic, as well as nutritional content. Many orchid species have become affected and extinct as a result of growers’ eagerness to obtain them. The current orchid study has concentrated on isolating and identifying mycorrhizal and non-mycorrhizal endophytes that lead to orchid growth and development and also the synthesis of useful bioactive compounds. In the large-scale biosynthetic pathway of industrially as well as pharmaceutically essential biomolecule derivatives, the biodynamics of orchid-fungal endophytes is assisted for renewable production of bio-applications and technologies. The associations between orchids as well as endophytes are the focus of the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aggarwal S, Nirmala C, Beri S, Rastogi S, Adholeya A (2012) In vitro symbiotic seed germination and molecular characterization of associated endophytic fungi in a commercially important and endangered Indian orchid Vanda coerulea Griff. Ex Lindl. Eur J Environ Sci 2(1).

  • Aggarwal S, Zettler LW (2010) Reintroduction of an endangered terrestrial orchid, Dactylorhiza hatagirea (D. Don) Soo, assisted by symbiotic seed germination: First report from the Indian subcontinent. Nat Sci 8(10):139–145.

    Google Scholar 

  • Agustini V, Sufaati S, Suharno S, Suwannasai N (2016) Rhizoctonia-like fungi isolated from roots of Dendrobium lancifolium var. papuanum and Calanthe triplicata in Papua, Indonesia. Biodiversitas J Biol Divers 17(1).

  • Alexander C, Hadley G (1985) Carbon movement between host and mycorrhizal endophyte during the development of the orchid Goodyera repens Br. New Phytologist 101(4):657–665.

    Article  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7(2):83–88.

    Article  CAS  Google Scholar 

  • Almeselmani M, Deshmukh PS, Sairam RK, Kushwaha SR, Singh TP (2006) Protective role of antioxidant enzymes under high temperature stress. Plant Sci 171(3):382–388.

    Article  CAS  Google Scholar 

  • Alurappa R, Chowdappa S, Narayanaswamy R, Sinniah UR, Mohanty SK, Swamy MK (2018) Endophytic fungi and bioactive metabolites production: an update. In Microbial biotechnology (pp. 455–482). Springer, Singapore.

    Chapter  Google Scholar 

  • Arditti J, Predgeon AM (1997) Orchid biology: reviews and prospectives, vol VII. Springer Science þ Business Media, Dordrecht

    Book  Google Scholar 

  • Athipunyakom P, Manoch L, Piluek C (2004) Isolation and identification of mycorrhizal fungi from eleven terrestrial orchids. Agri Nat Res 38(2):216–228.

    Google Scholar 

  • Baque MA, Shin YK, Elshmari T, Lee EJ, Paek KY (2011) Effect of light quality, sucrose and coconut water concentration on the microporpagation of Calanthe hybrids (‘Bukduseong’’Hyesung’and’Chunkwang’’Hyesung’). Australian J Crop Sci 5(10):1247–1254.

    CAS  Google Scholar 

  • Bayman P, Otero JT (2006) Microbial endophytes of orchid roots. In Microbial root endophytes (pp. 153–177). Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Beltrán-Nambo MA, Martínez-Trujillo M, Montero Castro JC (2018) Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere7:49–56.

  • Bertolini V, DAmon A, Veláquez ANR (2012) Symbiotic germination of three species of epiphytic orchids susceptible to genetic erosion, from Soconusco (Chiapas, Mexico). Eur J Environ Sci 1(2):60–68.

    Google Scholar 

  • Boruta T (2018) Uncovering the repertoire of fungal secondary metabolites: From Fleming’s laboratory to the International Space Station. Bioengineered 9(1):12–16.

    Article  CAS  Google Scholar 

  • Bulpitt CJ (2005) The uses and misuses of orchids in medicine. Qjm 98(9):625–631.

    Article  CAS  Google Scholar 

  • Bungtongdee N, Sopalun K, Laosripaiboon W, Iamtham S (2019) The chemical composition, antifungal, antioxidant and antimutagenicity properties of bioactive compounds from fungal endophytes associated with Thai orchids. J Phytopathol 167(1):56–64.

    Article  CAS  Google Scholar 

  • Cai L, Hyde KD, Taylor PWJ, Weir B, Waller J, Abang MM, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Diversity 39(1):183–204.

    Google Scholar 

  • Chand MB, Paudel MR, Pant B (2016) The antioxidant activity of selected wild orchids of Nepal. J Coast Life Med 4(9):731–736.

    Article  CAS  Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361(6408):150–153.

    Article  CAS  Google Scholar 

  • Chen J, Hu KX, Hou XQ, Guo SX (2011). Endophytic fungi assemblages from 10 Dendrobium medicinal plants (Orchidaceae). World J Microbiol Biotechnol 27(5):1009–1016.

    Article  Google Scholar 

  • Chen J, Wang H, Guo SX (2012) Isolation and identification of endophytic and mycorrhizal fungi from seeds and roots of Dendrobium (Orchidaceae). Mycorrhiza 22(4):297–307.

    Article  Google Scholar 

  • Chen J, Zhang L, Xing Y, Wang Y, Xing X, Zhang D (2013) Diversity and taxonomy of endophytic Xylariaceous fungi from medicinal plants of Dendrobium (Orchidaceae). Plos One 8(3).

  • Chen XM, Dong HL, Hu KX, Sun ZR, Chen J, Guo SX (2010) Diversity and antimicrobial and plant-growth-promoting activities of endophytic fungi in Dendrobium loddigesii Rolfe. J Plant Growth Regul 29(3):328–337.

    Article  Google Scholar 

  • Chowdappa P, Chethana CS, Pant RP, Bridge PD (2014) Multilocus gene phylogeny reveals occurrence of Colletotrichum cymbidiicola and C. cliviae on orchids in North East India. J Plant Pathol 96(2):327–334.

    Google Scholar 

  • Christenhusz MJ, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261(3):201–217.

    Article  Google Scholar 

  • Chutulo EC, Chalannavar RK (2018) Endophytic mycoflora and their bioactive compounds from Azadirachta indica: A comprehensive review. Journal of Fungi 4(2):42.

    Article  Google Scholar 

  • Cribb PJ, Kell SP, Dixon KW, Barrett RL (2003) Orchid conservation: a global perspective. Orchid conservation 124.

  • Dan Y, Meng Z, Guo S (2012) Effects of forty strains of Orchidaceae mycorrhizal fungi on growth of protocorms and plantlets of Dendrobium candidum and D. nobile. Afr J Microbiol Res 6(1):34–39.

    Google Scholar 

  • Das J, Ramesh KV, Maithri U, Mutangana D, Suresh CK (2014) Response of aerobic rice to Piriformospora indica.

  • Deb CR (2008) Effects of different factors on immature embryo culture, PLBs differentiation and rapid mass multiplication of Coelogyne suaveolens (Lindl.) Hook.

  • Decruse SW, Neethu RS, Pradeep NS (2018) Seed germination and seedling growth promoted by a Ceratobasidiaceae clone in Vanda thwaitesii Hook. f., an endangered orchid species endemic to South Western Ghats, India and Sri Lanka. South Afr J Bot 116:222–229.

    Article  Google Scholar 

  • Ding R, Chen XH, Zhang LJ, Yu XD, Qu B, Duan R, Xu YF (2014) Identity and specificity of Rhizoctonia-like fungi from different populations of Liparis japonica (Orchidaceae) in Northeast China. PloS one 9(8): e105573.

    Article  Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglas fir-Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. In Annales des sciences forestières (Vol. 48, No. 3, pp. 239–251). EDP Sciences.

  • Feng G, Zhang F, Li X, Tian C, Tang C, Rengel Z (2002) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12(4):185–190.

    Article  CAS  Google Scholar 

  • Fracchia, S, Aranda-Rickert A, Flachsland E, Terada G, Sede S (2014) Mycorrhizal compatibility and symbiotic reproduction of Gavilea australis, an endangered terrestrial orchid from south Patagonia. Mycorrhiza 24(8):627–634.

    Article  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New phytologist 176(1):22–36.

    Article  CAS  Google Scholar 

  • Gennaro M, Gonthier P, Nicolotti G (2003) Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in northern Italy. J Phytopathol 151(10):529–534.

    Article  Google Scholar 

  • Gezgin Y, Eltem R (2009) Diversity of endophytic fungi from various Aegean and Mediterranean orchids (saleps). Turk J Bot 33(6):439–445.

    Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332.

    Article  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions, vol 3. Springer, Berlin, Heidelberg, pp 213–252.

    Chapter  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol. Fertil. Soils 38(3):170–175.

    Article  Google Scholar 

  • González-Coloma A, Cosoveanu A, Cabrera R, Gimenez C, Kaushik N (2016) Endophytic fungi and their bioprospection. Fungi: Appl Manag Strat 14–31.

  • Gostinčar C, Turk M (2012) Extremotolerant fungi as genetic resources for biotechnology. Bioengineered 3(5):293–297.

    Article  Google Scholar 

  • Gutiérrez RMP (2010) Orchids: a review of uses in traditional medicine, its phytochemistry and pharmacology. J Med Plants Res 4(8):592–638.

    Google Scholar 

  • Hong IP, Kim HK, Park JS, Kim GP, Lee MW, Guo SX (2002) Physiological characteristics of symbiotic fungi associated with the seed germination of Gastrodia elata. Mycobiology 30(1):22–26.

    Article  Google Scholar 

  • Hossain MM, Sharma M, Pathak P (2009) Cost effective protocol for in vitro mass propagation of Cymbidium aloifolium (L.) Sw.–a medicinally important orchid. Engi Life Sci 9(6):444–453.

    Article  CAS  Google Scholar 

  • Hou XQ, Guo SX (2009) Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. J Integr Plant Biol 51(4):374–381.

    Article  CAS  Google Scholar 

  • Huang L, He XH, Zheng LM, Cai J (2004) Preliminary studies on mycorrhizal fungi in promoting the growth of orchid seedlings from tissue culture. Chinese Journal of Tropical Crops 25(1):36–38.

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal divers 33(163): e173.

    Google Scholar 

  • Jian-wei G, Fu C, Yu L (2016) Promoting role of Bacillus subtilis BS87 on the growth and content of some natural products in the medicinal plants Anoectochilus roxburghii and A. formosanus. Adv Life Sci 6:31–38.

    Google Scholar 

  • Kendon JP, Yokoya K, Zettler LW, Jacob AS, McDiarmid F, Bidartondo MI, Sarasan V (2020) Recovery of mycorrhizal fungi from wild collected protocorms of Madagascan endemic orchid Aerangis ellisii (BS Williams) Schltr. and their use in seed germination in vitro. Mycorrhiza 30(5):567–576.

    Article  CAS  Google Scholar 

  • Khamchatra N, Dixon KW, Tantiwiwat S, Piapukiew J (2016) Symbiotic seed germination of an endangered epiphytic slipper orchid, Paphiopedilum villosum (Lindl.) Stein. from Thailand. S Afr J Bot 104:76–81.

  • Kim KY, Jordan D, McDonald GA (1997) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and fertility of soils 26(2):79–87.

    Article  Google Scholar 

  • Kim YI, Chang KJ, Ka KH, Hur H, Hong IP, Shim JO, Lee MW (2006) Seed germination of Gastrodia elata using symbiotic fungi, Mycena osmundicola. Mycobiology 34(2):79–82.

    Article  Google Scholar 

  • Li AR, Guan KY, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels?. Ann Bot 112(6):1089–1098.

    Article  CAS  Google Scholar 

  • Li M (2001) Studies and applications on mycorrhiza of Paphiopedilum armeniacum. J Biol 18:17–18.

    CAS  Google Scholar 

  • Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J (2013) How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 4(4):212–223.

    Article  Google Scholar 

  • Ma X, Kang J, Nontachaiyapoom S, Wen T, Hyde KD (2015) Non-mycorrhizal endophytic fungi from orchids. Current science 72–87.

  • Macdonald C, Singh B (2014) Harnessing plant-microbe interactions for enhancing farm productivity. Bioengineered 5(1):5–9.

    Article  Google Scholar 

  • Malla R, Prasad R, Kumari R, Giang PH, Pokharel U, Oelmüller R, Varma A (2004) Phosphorus solubilizing symbiotic fungus: Piriformospora in-dica. Endocytobiosis Cell Res 15(2):579–600.

    Google Scholar 

  • Matsuoka H, Akiyama M, Kobayashi K, Yamaji K (2013) Fe and P solubilization under limiting conditions by bacteria isolated from Carex kobomugi roots at the Hasaki coast. Current Microbiology 66(3) 314–321.

    Article  CAS  Google Scholar 

  • Miller AJ, Cramer MD (2005) Root nitrogen acquisition and assimilation. Plant and Soil 274(1):1–36.

    Article  CAS  Google Scholar 

  • Nicoletti R, Fiorentino A (2015) Plant bioactive metabolites and drugs produced by endophytic fungi of Spermatophyta. Agriculture,5(4):918–970.

    Article  CAS  Google Scholar 

  • Pant B (2013) Medicinal orchids and their uses: Tissue culture a potential alternative for conservation. Afr. J. Plant Sci. 7(10):448–467.

    Article  Google Scholar 

  • Pant B, Paudel MR, Chand MB, Wagner SH (2016) A treasure trove of orchids in Central Nepal. Kirtipur, Kathmandu, Nepal: Central Department of Botany, Tribhuvan University.

    Google Scholar 

  • Pant B, Raskoti BB (2013) Medicinal orchids of Nepal. Himalayan map house.

  • Pant B, Shah S, Shrestha R, Pandey S, Joshi PR (2017) An overview on orchid endophytes. Mycorrhiza-nutrient uptake, biocontrol, ecorestoration 503–524.

  • Pant B, Thapa D (2012) In vitro mass propagation of an epiphytic orchid, Dendrobium primulinum Lindl. through shoot tip culture. Afr J Biotechnol 11(42):9970–9974.

    CAS  Google Scholar 

  • Park EJ, Lee WY (2013) In vitro symbiotic germination of myco-heterotrophic Gastrodia elata by Mycena species. Plant Biotechnol Rep 7(2):185–191.

    Article  CAS  Google Scholar 

  • Patil RH, Patil MP, Maheshwari VL (2016). Bioactive secondary metabolites from endophytic fungi: a review of biotechnological production and their potential applications. Stud Nat Prod Chem 49:189–205.

    Article  CAS  Google Scholar 

  • Pereira OL, Kasuya MCM, Rollemberg CDL, Borges AC (2005) In vitro symbiotic seed germination of Oncidium flexuosum (Orchidaceae) by Rhizoctonia-like mycorrhizal fungi. Revista Brasileira de Ciencia do Solo 29(2):199–206.

    Article  Google Scholar 

  • Pongener A, Deb CR (2011) In vitro regeneration of plantlets of Cymbidium iridioides D. Don using nodal segments as explants. Int J Appl Biotechnol Biochem 1:389–400.

    Google Scholar 

  • Poudel MR, Chand MB, Karki N, Pant B (2015) Antioxidant activity and total phenolic and flavonoid contents of Dendrobium amoenum Wall. ex Lindl. Botanica Orientalis: J Plant Sci 9:20–26.

    Article  Google Scholar 

  • Pradhan S, Regmi T, Ranjit M, Pant B (2016) Production of virus-free orchid Cymbidium aloifolium (L.) Sw. by various tissue culture techniques. Heliyon 2(10): e00176.

    Article  Google Scholar 

  • Pradhan S, Tiruwa B, Subedee BR, Pant B (2014) In vitro germination and propagation of a threatened medicinal orchid, Cymbidium aloifolium (L.) Sw. through artificial seed. Asian Pac J Trop Biomed 4(12):971–976.

    Article  CAS  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53(12):1016–1024.

    Article  CAS  Google Scholar 

  • Rafter M, Yokoya K, Schofield EJ, Zettler LW, Sarasan V (2016) Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the Central Highlands of Madagascar. Mycorrhiza 26(6):541–552.

    Article  CAS  Google Scholar 

  • Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Selosse MA (2009) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Annals of Botany 104(3):595–610.

    Article  Google Scholar 

  • Saha D, Rao AN (2006) Studies on endophytic mycorrhiza of some selected orchids of Arunachal Pradesh–1. Isolation and identification. Bull. Arunachal For. Res 22(1):9–16.

    Google Scholar 

  • Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MDC, Martinez-Contreras RD (2018) Fungal diversity and community composition of culturable fungi in Stanhopea trigrina cast gibberellin producers. Front Microbiol 9:612.

    Article  Google Scholar 

  • Salifah HAB, Muskhazli M, Rusea G, Nithiyaa P (2011) Variation in mycorrhizal specificity for in vitro symbiotic seed germination of Grammatophyllum speciosum Blume. Sains Malaysiana 40(5):451–455.

    Google Scholar 

  • Sathiyadash K, Muthukumar T, Murugan SB, Sathishkumar R, Pandey RR (2014) In vitro symbiotic seed germination of South Indian endemic orchid Coelogyne nervosa. Mycoscience 55(3):183–189.

    Article  Google Scholar 

  • Sazak A, Ozdener Y (2006) Symbiotic and asymbiotic germination of endangered Spiranthes spiralis (L.) Chevall. and Dactylorhiza osmanica (Kl.) Soó var. osmanica (endemic). Pak J Biol Sci 9(12):2222–2228.

    Article  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant physiol 116(2):447–453.

    Article  CAS  Google Scholar 

  • Scherer HW, Ahrens G (1996) Depletion of non-exchangeable NH4-N in the soil—root interface in relation to clay mineral composition and plant species. Euro J Agro 5(1–2):1–7.

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686.

    Article  Google Scholar 

  • Shah S, Shrestha R, Maharjan S, Selosse MA, Pant B (2019) Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 8(1):5.

    Article  CAS  Google Scholar 

  • Shahollari B, Varma A, Oelmüller R (2005) Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol 162(8):945–958.

    Article  CAS  Google Scholar 

  • Sharma J, Zettler LW, Van Sambeek JW (2003) A survey of mycobionts of federally threatened Platanthera praeclara (Orchidaceae). Symbiosis.

  • Shimura H, Koda Y (2005) Enhanced symbiotic seed germination of Cypripedium macranthos var. rebunense following inoculation after cold treatment. Physiol Plant 123(3):281–287.

    Article  CAS  Google Scholar 

  • Shimura H, Matsuura M, Takada N, Koda Y (2007) An antifungal compound involved in symbiotic germination of Cypripedium macranthos var. rebunense (Orchidaceae). Phytochemistry 68(10):1442–1447.

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21(2–3):75–89.

    Article  Google Scholar 

  • Sopalun K, Laosripaiboon W, Wachirachaikarn A, Iamtham S (2020).Isolation and screening of extracellular enzymatic activity of endophytic fungi isolated from Thai orchids. S Afr J Bot 134:273–279.

    Article  CAS  Google Scholar 

  • Sopalun K, Laosripaiboon W, Wachirachaikarn A, Iamtham S (2021) Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. S Afr J Bot 141: 66–76.

    Article  CAS  Google Scholar 

  • Sour V, Phonpho S, Soytong K (2015) Isolation of endophytic fungi from some orchid varieties. J Agric Technol 11(5):1243–1254.

    Google Scholar 

  • Sridhar KR (2012) Aspect and prospect of endophytic fungi. Microbes: Divers Biotechnol 43–62.

  • Steinfort U, Verdugo G, Besoain X, Cisternas MA (2010) Mycorrhizal association and symbiotic germination of the terrestrial orchid Bipinnula fimbriata (Poepp.) Johnst (Orchidaceae). Flora-Morphology, Distribution, Functional Ecology of Plants 205(12):811–817.

    Article  Google Scholar 

  • Stewart SL, Kane ME (2006) Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell, Tissue and Organ Culture 86(2):147–158.

    Article  CAS  Google Scholar 

  • Stewart SL, Kane ME (2007) Symbiotic seed germination and evidence for in vitro mycobiont specificity in Spiranthes brevilabris (Orchidaceae) and its implications for species-level conservation. In Vitro Cellular & Developmental Biology-Plant 43(3):178–186.

    Article  Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinquiseta, H. macroceratitis) from Florida. Aqu Bot 72(1):25–35.

    Article  Google Scholar 

  • Stewart SL, Zettler LW, Minso J, Brown PM (2003) Symbiotic germination and reintroduction of Spiranthes brevilabris Lindley, an endangered orchid native to Florida. Selbyana 64–70.

  • Sudheep NM, Sridhar KR (2012) Non-mycorrhizal fungal endophytes in two orchids of Kaiga forest (Western Ghats), India. J Forestry Res 23(3):453–460.

    Article  CAS  Google Scholar 

  • Thakur J, Dwivedi MD, Uniyal PL. Ultrastructural studies and molecular characterization of root-associated fungi of Crepidium acuminatum (D. Don) Szlach.: a threatened and medicinally important taxon. J Genet. 2018;97(5):1139–1146.

    Article  CAS  Google Scholar 

  • Tondello A, Vendramin E, Villani M, Baldan B, Squartini A (2012) Fungi associated with the southern Eurasian orchid Spiranthes spiralis (L.) Chevall. Fungal Biol 116(4): 543–549.

    Article  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant signaling & behavior 7(12):1621–1633.

    Article  CAS  Google Scholar 

  • Tsavkelova EA, Cherdyntseva TA, Botina SG, Netrusov AI (2007) Bacteria associated with orchid roots and microbial production of auxin. Microbiol Res 162(1):69–76.

    Article  CAS  Google Scholar 

  • Umata H, Ota Y, Yamada M, Watanabe Y, Gale SW (2013) Germination of the fully myco-heterotrophic orchid Cyrtosia septentrionalis is characterized by low fungal specificity and does not require direct seed-mycobiont contact. Mycoscience 54(5):343–352.

    Article  CAS  Google Scholar 

  • Varma A, Sherameti I, Tripathi S, Prasad R, Das A, Sharma M, Oelmüller R (2012) 13 the symbiotic fungus Piriformospora indica. In Fungal associations (pp. 231–254). Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390.

  • Vujanovic V, St-Arnaud M, Barabé D, Thibeault G (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86(1):79–86.

    Article  Google Scholar 

  • Warcup JH (1981) The mycorrhizal relationships of Australian orchids. New Phytol 87(2):371–381.

    Article  Google Scholar 

  • Waud M, Busschaert P, Lievens B, Jacquemyn H (2016) Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165.

    Article  Google Scholar 

  • Wu LS, Jia M, Chen L, Zhu B, Dong HX, Si JP, Han T (2016) Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from Dendrobium officinale. Molecules 21:1–14.

    Google Scholar 

  • Wu LS, Jia M, Chen L, Zhu B, Dong HX, Si JP, Han T (2016) Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from Dendrobium officinale. Molecules 21:1–14.

    Google Scholar 

  • Yamamoto T, Miura C, Fuji M, Nagata S, Otani Y, Yagame T, Kaminaka H. (2017) Quantitative evaluation of protocorm growth and fungal colonization in Bletilla striata (Orchidaceae) reveals less-productive symbiosis with a non-native symbiotic fungus. BMC plant biology 17(1):1–10.

    Article  Google Scholar 

  • Yang S, Zhang X, Cao Z, Zhao K, Wang S, Chen M, Hu X (2014) Growth-promoting S phingomonas paucimobilis ZJSH 1 associated with D endrobium officinale through phytohormone production and nitrogen fixation. Microb Biotechnol 7(6):611–620.

    Article  CAS  Google Scholar 

  • Yang Y, Zhao H, Barrero RA, Zhang B, Sun G, Wilson IW, Hoffman A (2014) Genome sequencing and analysis of the paclitaxel-producing endophytic fungus Penicillium aurantiogriseum NRRL 62431. BMC genomics 15(1):1–14.

    Article  Google Scholar 

  • Yang YL, Liu ZY, Zhu GS (2008) Study on symbiotic seed germination of Pleione bulbocodioides (Franch) Rolfe. Microbiol 35(6):909–912.

    Google Scholar 

  • Yuan ZL, Chen YC, Yang Y (2009) Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World J Microbiol Biotechnol 25(2):295–303.

    Article  Google Scholar 

  • Zeghad N, Merghem R (2013) Antioxidant and antibacterial activities of Thymus vulgaris L. Med Arom Plant Res J 1:5–11

  • Zettler LW, Poulter SB, McDonald KI, Stewart SL (2007) Conservation-driven propagation of an epiphytic orchid (Epidendrum nocturnum) with a mycorrhizal fungus. HortScience 42(1):135–139.

    Article  Google Scholar 

  • Zhang FS, Lv YL, Zhao Y, Guo SX (2013) Promoting role of an endophyte on the growth and contents of kinsenosides and flavonoids of Anoectochilus formosanus Hayata, a rare and threatened medicinal Orchidaceae plant. J Zhejiang Uni Sci B 14(9):785–792.

    Article  CAS  Google Scholar 

  • Zhang S, Yang Y, Li J, Qin J, Zhang W, Huang W, Hu H (2018) Physiological diversity of orchids. Plant Divers 40(4):196–208.

    Article  Google Scholar 

  • Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24(7):487–499.

    Article  CAS  Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytologist 175(1):166–175

    Article  CAS  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Monika Thakur and Sayeeda Kousar Bhatti. The manuscript was written by Monika Thakur and supervised, and edited by Sayeeda Kousar Bhatti.The authors’ thoroughly revised the manuscript prior to its submission.

Corresponding author

Correspondence to Monika Thakur.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, S.K., Thakur, M. An Overview on Orchids and their Interaction with Endophytes. Bot. Rev. 88, 485–504 (2022). https://doi.org/10.1007/s12229-022-09275-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-022-09275-5

Keywords

Navigation