Skip to main content
Log in

Estimation of genetic diversity and its exploitation in plant breeding

  • Review
  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Estimation of genetic diversity is a prerequisite to select genetically diverse parents. Availability and collection of genetically diverse parents contribute significantly towards the selection and utilization of promising parents in plant breeding to develop a commercial variety or hybrid. Germplasm is an important source for various qualitative and quantitative traits that may be used to introgress through combination breeding for the improvement of the existing cultivars or development of new cultivars and hybrids by using marker assisted selection. Genetic diversity refers to the variations among the alleles of a gene and it may be examined at nucleotide level in the DNA sequence. Various classical and DNA tools are available to access genetic diversity at morphological and molecular levels and can be expressed in the form of dendrogram, percentage polymorphic loci and genetic distance. Estimation of genetic diversity using molecular techniques is more reliable as it is based on highly polymorphic molecular markers which remain unaffected by the influence of environment. Genetically diverse genotypes are used as valuable source by the plant breeders for the development of new or improved crop varieties with desirable traits to cope up the biotic and abiotic stresses such as drought tolerant, salt tolerant, insect pest and disease resistance etc. This article reviews various traditional to molecular methods used in estimation of genetic diversity and their exploitations in plant breeding programme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdellatif KF and Khidr YA (2010) Genetic diversity of new maize hybrids based on SSR markers as compared with other molecular and biochemical markers. Journal of Crop Science and Biotechnology 13: 139–145.

    Article  Google Scholar 

  • Adal AM, Demissie ZA and Mahmoud SS (2015) Identification, validation and cross-species transferability of novel Lavandula EST-SSRs. Planta 241: 987–1004.

    Article  CAS  PubMed  Google Scholar 

  • Adams MD, Kelley JM, Gocayne JD, Dubnick MAK, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR and Venter JC (1991) Complementary DNA sequencing: Expressed sequence tags and human genome project. Science 252: 1651–1656.

    Article  CAS  PubMed  Google Scholar 

  • Adewale BD, Aremu CO and Amazue UE (2012) Intra-Specific Variability and Diversity Analysis of African Yam Bean By Seed Size Parameters. Journal of Agricultural and Biological Science 7: 454–461.

    Google Scholar 

  • Adhikari S, Saha S, Biswas A, Rana TS, Bandyopadhyay TK and Ghosh P (2017) Application of molecular markers in plant genome analysis: a review. The Nucleus 60: 283–297.

    Article  Google Scholar 

  • Afrin W, Nafis MH, Hossain Muhammed Ali, Islam MM and Hossain Md Amir (2018) Responses of rice (Oryza sativa L.) genotypes to different levels of submergence. Comptes Rendus Biologies 341: 85–96.

    Article  PubMed  Google Scholar 

  • Ahmad HB, Rauf S, Chattha WS, Hussain B, Hussain I and Rasool I (2019) Diversity analysis of mungbean (Vigna radiata) germplasm using a semi-graphical technique. South African Journal of Plant and Soil 36: 393–396.

    Article  Google Scholar 

  • Ahmed MSU, Khalequzzaman M, Bashar MK and Shamsuddin AKM (2016) Agro-Morphological, Physico-Chemical and Molecular Characterization of Rice Germplasm with Similar Names of Bangladesh. Rice Science 23: 211–218.

    Article  Google Scholar 

  • Akhtar S, Bhat MA, Wani SA, Bhat KA, Chalkoo S, Mir MR and Wani SA (2010) Marker Assisted Selection in Rice. Journal of Phytology 2: 66–81.

    Google Scholar 

  • Alemu A, Feyissa T, Letta T and Abeyo B (2020) Genetic diversity and population structure analysis based on the high density SNP markers in Ethiopian durum wheat (Triticum turgidum ssp. durum). BMC Genetics 21: 1–12.

    Article  CAS  Google Scholar 

  • Amiri R, Bahraminejad S and Cheghamirza K (2018) Estimating genetic variation and genetic parameters for grain iron, zinc and protein concentrations in bread wheat genotypes grown in Iran. Jornal of Cereal Science 80: 16–23.

    Article  CAS  Google Scholar 

  • Anderson E (1960) A Semigraphical Method for the Analysis of Complex Problems. Technometrics 2: 387–391.

    Article  Google Scholar 

  • Anjali N, Ganga KM, Nadiya F, Shefeek S and Sabu KK (2016) Intraspecific variations in cardamom (Elettaria cardamomum Maton): assessment of genomic diversity by flow cytometry, cytological studies and ISSR analysis. SpringerPlus 5: 1–11.

    Article  Google Scholar 

  • Anupam A, Imam J, Quatadah SM, Siddaiah A, Das SP, Variar M and Mandal NP (2017) Genetic Diversity Analysis of Rice Germplasm in Tripura State of Northeast India Using Drought and Blast Linked Markers. Rice Science 24: 10–20.

    Article  Google Scholar 

  • Aremu C (2011) Genetic Diversity : A review for need and measurements for intraspecie crop improvement. Journal of Microbiology and Biotechnology Research 1: 80–85.

    Google Scholar 

  • Ariyo OJ (1990) Measurement and classification of genetic diversity in okra (Abelmoschus esculentus). Annals of Applied Biology 116: 335–341.

    Article  Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H and Matsuoka M (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice “green revolution.” Breeding Science 52: 143–150.

  • Bag MK, Ray A, Masurkar P, Devanna BN, Parameswaran C, Baite M, Rath PC and Nayak A (2021) Genetic diversity and population structure analysis of isolates of the rice false smut pathogen Ustilaginoidea virens in India. Plant Pathology 70: 1085–1097.

    Article  Google Scholar 

  • Bai X, Luo L, Yan W, Kovi MR, Zhan W and Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics 11: 1–11.

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Fukao T, Ronald P, Ismail A, Heuer S and Mackill D (2010) Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice 3: 138–147.

    Article  Google Scholar 

  • Barcaccia G, Albertini E, Rosellini D, Tavoletti S and Veronesi F (2000) Inheritance and mapping of 2n-egg production in diploid alfalfa. Genome 43: 528–537.

    Article  CAS  PubMed  Google Scholar 

  • Barik J, Kumar V, Lenka SK and Panda D (2020) Assessment of Variation in Morpho-Physiological Traits and Genetic Diversity in Relation to Submergence Tolerance of Five Indigenous Lowland Rice Landraces. Rice Science 27: 32–43.

    Article  Google Scholar 

  • Barrett BA and Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Science 38: 1261–1271.

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M and Davis RW (1980) Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. The American Journal of Human Genetics 32: 314–331.

    CAS  PubMed  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234: 177–186.

    Article  CAS  PubMed  Google Scholar 

  • Burton GW and DeVane EH (1953) Estimating Heritability in Tall Fescue (Festuca Arundinacea) from Replicated Clonal Material. Agronomy Journal 45: 478–481.

    Article  Google Scholar 

  • Cantelli DAV, Hamawaki OT, Rocha MR, Nogueira APO, Hamawaki RL, Sousa LB and Hamawaki CDL (2016) Analysis of the genetic divergence of soybean lines through hierarchical and tocher optimization methods. Genetics and Molecular Research 15: 1–13.

    Article  Google Scholar 

  • Casasoli M, Mattioni C, Cherubini M and Villani F (2001) A genetic linkage map of European chestnut (Castanea sativa Mill.) based on RAPD, ISSR and isozyme markers. Theoretical and Applied Genetics 102: 1190–1199.

    Article  CAS  Google Scholar 

  • Chandra S (1977) Comparison of Mahalanobis’s method and metroglyph technique in the study of genetic divergence in Linum usitatissimum L. germplasm collection. Euphytica 26: 141–148.

    Article  Google Scholar 

  • Chaudhary HK, Sharma PK, Manoj NV and Singh K (2019) New frontiers in chromosome elimination-mediated doubled haploidy breeding: Focus on speed breeding in bread and durum wheat. Indian Journal of Genetics and Plant Breeding 79: 254–263.

    Google Scholar 

  • Cholastova T and Knotova D (2012) Using morphological and microsatellite markers to assess the genetic diversity in Alfalfa (medicago sativa L.). International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 6: 781–787.

    Google Scholar 

  • Collard BCY and Mackill DJ (2009) Start Codon Targeted (SCoT) Polymorphism: A Simple, Novel DNA Marker Technique for Generating Gene-Targeted Markers in Plants. Plant Molecular Biology Reporter 27: 86–93.

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB and Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142: 169–196.

    Article  CAS  Google Scholar 

  • da Cunha Santos G, Saieg MA, Troncone G and Zeppa P (2018) Cytological preparations for molecular analysis: A review of technical procedures, advantages and limitations for referring samples for testing. Cytopathology 29: 125–132.

    Article  PubMed  Google Scholar 

  • Del Giudice M (2017) Heterogeneity Coefficients for Mahalanobis’ D as a Multivariate Effect Size. Multivariate Behavioral Research 52: 216–221.

    Article  PubMed  Google Scholar 

  • Devi KR, Chandra BS, Lingaiah N, Hari Y and Venkanna V (2017) Analysis of variability, correlation and path coefficient studiesfor yield and quality traits in Rice (Oryza Sativa L.). Agricultural Science Digest 37: 1–9.

    Google Scholar 

  • Donde R, Kumar J, Gouda G, Gupta MK, Mukherjee M, Baksh SY, Mahadani P, Sahoo KK, Behera L and Dash SK (2019) Assessment of Genetic Diversity of Drought Tolerant and Susceptible Rice Genotypes Using Microsatellite Markers. Rice Science 26: 239–247.

    Article  Google Scholar 

  • Eagles HA, Bariana HS, Ogbonnaya FC, Rebetzke GJ, Hollamby GJ, Henry RJ, Henschke PH and Carter M (2001) Australian Journal of Agricultural Research 52: 1349–1356.

    Article  CAS  Google Scholar 

  • Elangovan M, Kiranbabu P, Seetharama N and Patil JV (2014) Genetic Diversity and Heritability Characters Associated in Sweet Sorghum [Sorghum bicolor (L.) Moench]. Sugar Tech 16: 200–210.

    Article  Google Scholar 

  • El-Esawi, MA, El-Zaher Mustafa A, Badr S and Sammour R (2017) Isozyme analysis of genetic variability and population structure of Lactuca L. germplasm. Biochemical Systematics and Ecology 70: 73–79.

    Article  CAS  Google Scholar 

  • Elisens WJ and Nelson AD (1993) Morphological and Isozyme Divergence in Gambelia (Scrophulariaceae): Species Delimitation and Biogeographic Relationships. Systematic Botany 18: 454–468.

    Article  Google Scholar 

  • Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KFM, Poland J and Baenziger PS (2018) Genetic diversity and population structure of F3:6 Nebraska Winter wheat genotypes using genotyping-by-sequencing. Frontiers in Genetics 9: 1–9.

    Article  CAS  Google Scholar 

  • Ganapathy PS and Scandalios JG (1973) Malate Dehydrogenase Isozymes in Haploid and Diploid Datura Species. Journal of Heredity 64: 186–188.

    Article  CAS  PubMed  Google Scholar 

  • Giarrocco LE, Marassi MA and Salerno GL (2007) Assessment of the genetic diversity in Argentine rice cultivars with SSR markers. Crop Science 47: 853–860.

    Article  CAS  Google Scholar 

  • Govindaraj M, Vetriventhan M and Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genetics Research International 431487: 1–14.

    Article  Google Scholar 

  • Guha PK, Mazumder A, Das A, Pani DR and Mondal TK (2019) In silico identification of long non-coding RNA based simple sequence repeat markers and their application in diversity analysis in rice. Gene Reports 16: 1–6.

    Article  Google Scholar 

  • Gupta M, Chyi YS, Romero-Severson J and Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple-sequence repeats. Theoretical and Applied Genetics 89: 998–1006.

    Article  CAS  PubMed  Google Scholar 

  • Habiba, Sarkar D, Haque ME, Islam MA, Mukherjee A and Sikdar B (2019) Assessment of genetic diversity and phenetic relationships among some Bangladeshi cultivars of cucumber (Cucumis sativus L.) using isozyme and protein profiling. Vegetos 32: 494–507.

    Article  Google Scholar 

  • Hammer K, Arrowsmith N and Gladis T (2003) Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften 90: 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Hassani SMR, Talebi R, Pourdad SS, Naji AM and Fayaz F (2020) In-depth genome diversity, population structure and linkage disequilibrium analysis of worldwide diverse safflower (Carthamus tinctorius L.) accessions using NGS data generated by DArTseq technology. Molecular Biology Reports 47: 2123–2135.

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2003) The genes of the Green Revolution. Trends in Genetics 19: 5–9.

    Article  CAS  PubMed  Google Scholar 

  • Hu J and Vick BA (2003) Target region amplification polymorphism: A novel marker technique for plant genotyping. Plant Molecular Biology Reporter 21: 289–294.

    Article  CAS  Google Scholar 

  • Iftekharuddaula KM, Newaz MA, Salam MA, Ahmed HU, Mahbub MAA, Septiningsih EM, Collard BCY, Sanchez DL, Pamplona AM and Mackill DJ (2011) Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into BR11, the rainfed lowland rice mega variety of Bangladesh. Euphytica 178: 83–97.

    Article  Google Scholar 

  • Islam MR, Faruquei MAB, Bhuiyan MAR, Biswa PS and Salam MA (2004) Genetic Diversity in Irrigated Rice. Pakistan Journal of Biological Sciences 7: 226–229.

    Article  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D and Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Research 29: 1–7.

    Article  Google Scholar 

  • Jasim Aljumaili S, Rafii MY, Latif MA, Sakimin SZ, Arolu IW and Miah G (2018) Genetic Diversity of Aromatic Rice Germplasm Revealed by SSR Markers. BioMed Research International 7685032: 1–11.

    Article  CAS  Google Scholar 

  • Jeffreys AJ, Wilson V and Thein SL (1985) Hypervariable “minisatellite” regions in human DNA. Nature 314: 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Jones BL, Raga TO, Liebert A, Zmarz P, Bekele E, Danielsen ET, Olsen AK, Bradman N, Troelsen JT and Swallow DM (2013) Diversity of lactase persistence alleles in ethiopia: Signature of a soft selective sweep. The American Journal of Human Genetics 93: 538–544.

    Article  CAS  PubMed  Google Scholar 

  • Joshi AB and Dhawan NL (1966) Genetic improvement in yield with special reference to self-fertilizing crops. Indian Journal of Genetics and Plant Breeding 26: 101–113.

    Google Scholar 

  • Joshi BK, Mudwari A, Bhatta MR and Ferrara GO (2004) Genetic Diversity in Nepalese Wheat Cultivars Based on Agro-Morphological Traits and Coefficients of Parentage. Nepal Agriculture Research Journal 5: 7–18.

    Google Scholar 

  • Kakaei M and Ahmadian S (2021) Genetic Diversity Study of Some Iranian Alfalfa Genotypes Based on Seed Storage Proteins Patterns. Iranian Journal of Science and Technology, Transactions A: Science 45: 1223–1228.

    Article  Google Scholar 

  • Keiper FJ and McConchie R (2000) An analysis of genetic variation in natural populations of Sticherus flabellatus [R. Br. (St John)] using amplified fragment length polymorphism (AFLP) markers. Molecular Ecology 9: 571–581.

    Article  CAS  PubMed  Google Scholar 

  • Khodadadi M, Fotokian MH and Miransari M (2011) Genetic diversity of wheat (Triticum aestivum L.) genotypes based on cluster and principal component analyses for breeding strategies. Australian Journal of Crop Science 5: 17–24.

    Google Scholar 

  • Khosa JS, McCallum J, Dhat, AS and Macknight RC (2016) Enhancing onion breeding using molecular tools. Plant Breeding 135: 9–20.

    Article  Google Scholar 

  • Konleczny A and Ausubel FM (1993) A procedure for Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. The Plant Journal 4: 403–410.

    Article  Google Scholar 

  • Kumar B, Gupta BB and Singh B (2014) Genetic diversity for morphological and quality traits in rice (Oryza sativa L.). The Bioscan 9: 1759–1762.

    Google Scholar 

  • Kumar B, Prasad P, Mehdi J, Gupta A, Shanker K, Singh M, Gautam R and Yadav HK (2020a) Morpho-metric and molecular characterization of Uraria picta (Jacq.) Desv.ex DC. - A medicinal plant. Journal of Applied Research on Medicinal and Aromatic Plants 16: 100242.

  • Kumar S, Dwivedi SK, Basu S, Kumar G, Mishra JS, Koley TK, Rao KK, Choudhary AK, Mondal S, Kumar S, Bhakta N, Bhatt BP, Paul RK and Kumar A (2020b) Anatomical, agro-morphological and physiological changes in rice under cumulative and stage specific drought conditions prevailed in eastern region of India. Field Crops Research 245: 107658.

    Article  Google Scholar 

  • Lan B, Yang Y, Guo L, Li X and Huo G. (2020) Among-Population Genetic diversity of rice blast fungus based on fingerprinting of virulence–related genes. Physiological and Molecular Plant Pathology 112: 101554.

    Article  CAS  Google Scholar 

  • Li G and Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics 103: 455–461.

    Article  CAS  Google Scholar 

  • Li X, Ding X, Chu B, Zhou Q, Ding G and Gu S (2008) Genetic diversity analysis and conservation of the endangered Chinese endemic herb Dendrobium officinale Kimura et Migo (Orchidaceae) based on AFLP. Genetica 133: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Litt M and Luty JA (1989) A Hypervariable Microsatellite Revealed by In Vitro Amplification of a Dinucleotide Repeat within the Cardiac Muscle Action Gene. The American Journal of Human Genetics 44: 397–401.

    CAS  PubMed  Google Scholar 

  • Liu K and Muse SV (2005) PowerMaker: An integrated analysis environment for genetic maker analysis. Bioinformatics 21: 2128–2129.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Chen X, Hu S, Zhan Q and Peng W (2021) Genetic diversity and distribution of rhizobia associated with soybean in red soil in Hunan Province. Archives of Microbiology 203: 1971–1980.

    Article  CAS  PubMed  Google Scholar 

  • Liyanage NMN, Ranawake AL and Bandaranayake PCG (2020) Cross–pollination effects on morphological molecular and biochemical diversity of a selected cinnamon (Cinnamomum zeylanicum Blume) seedling population. Journal of Crop Improvement 2020: 21–37.

    Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P and Kilian A (2008) DArT markers: Diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9: 1–11.

    Article  CAS  Google Scholar 

  • Mahalanobis PC (1936) On the generalized distance in statistics. National Institute of Science of India 2: 49–55.

    Google Scholar 

  • Mahboubi M, Mehrabi R, Naji AM and Talebi R (2020) Whole-genome diversity, population structure and linkage disequilibrium analysis of globally diverse wheat genotypes using genotyping-by-sequencing DArTseq platform. 3 Biotech 10: 1–13.

    CAS  Google Scholar 

  • Mandák B, Krak K, Vít P, Lomonosova MN, Belyayev A, Habibi F, Wang L, Douda J and Štorchová H (2018) Hybridization and polyploidization within the Chenopodium album aggregate analysed by means of cytological and molecular markers. Molecular Phylogenetics and Evolution 129: 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Mateu-Andrés I and De Paco L (2005) Allozymic differentiation of the Antirrhinum majus and A. siculum species groups. Annals of Botany 95: 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Mathure S, Shaikh A, Renuka N, Wakte K, Jawali N, Thengane R and Nadaf A (2011) Characterisation of aromatic rice (Oryza sativa L.) germplasm and correlation between their agronomic and quality traits. Euphytica 179: 237–246.

    Article  Google Scholar 

  • Mazid MS, Rafii MY, Hanafi MM, Rahim HA, Shabanimofrad M and Latif MA (2013) Agro-morphological characterization and assessment of variability, heritability, genetic advance and divergence in bacterial blight resistant rice genotypes. South African Journal of Botany 86: 15–22.

    Article  Google Scholar 

  • McCouch SR, Temnykh S, Lukashova A, Coburn J, DeClerck G, Cartinhour S, Harrington S, Thomson M, Septiningsih E, Semon M, Moncada P and Li J (2008) Microsatellite markers in rice: abundance, diversity, and applications. Rice Genetics 4: 117–135.

    Article  Google Scholar 

  • Melaku G, Labroo M, Liyu H, Shilai Z, Guangfu H, Jing Z, Tesfaye K, Haileselassie T and Hu F (2019) Genetic diversity and differentiation of the African wild rice (Oryza longistaminata chev. et roehr) in Ethiopia. Scientific African 6: 1–13.

    Article  Google Scholar 

  • Mohammadi SA and Prasanna BM (2003) Analysis of genetic diversity in crop plants - Salient statistical tools and considerations. Crop Science 43: 1235–1248.

    Article  Google Scholar 

  • Mukai Y, Friebe B, Hatchett JH, Yamamoto M and Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma 102: 88–95.

    Article  Google Scholar 

  • Murty BR and Quadri MI (1966) Analysis of divergence in some self-compatible forms of Brassica campestris var. brown sarson. Indian Journal of Genetics and Plant Breeding 26: 45–48.

    Google Scholar 

  • Nachimuthu VV, Raveendran M, Duraialaguraja S, Sivakami R, Pandian BA, Ponniah G, Gunasekaran K, Swaminathan M, Suji KK and Sabariappan R (2015) Analysis of Population Structure and Genetic Diversity in Rice Germplasm Using SSR Markers: An Initiative Towards Association Mapping of Agronomic Traits in Oryza sativa. Rice 8: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M, Hatipoğlu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G and Baloch FS (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment 32: 261–285.

    Article  CAS  Google Scholar 

  • Nagy ED, Molnár-Láng M, Linc G and Láng L (2002) Identification of wheat-barley translocations by sequential GISH and two-colour FISH in combination with the use of genetically mapped barley SSR markers. Genome 45: 1238–1247.

    Article  CAS  PubMed  Google Scholar 

  • Nahar S, Lahkar L, Islam MA, Saikia D, Shandilya ZM, Vemireddy LR, Sahoo L and Tanti B (2020) Genetic diversity based on osmotic stress tolerance-related morpho-physiological traits and molecular markers in traditional rice cultivars. Biologia 75: 669–679.

    Article  CAS  Google Scholar 

  • Nakamura A, Hirano H and Kikuchi F (1991) Identification and genetic analysis of semidwarfism-related proteins in rice (Oryza sativa L.). Theoretical and Applied Genetics 81: 376–380.

    Article  CAS  PubMed  Google Scholar 

  • Nasim N, Sandeep IS, Sahoo A, Das S, Panda MK, Acharya L, RamaRao VV, Nayak S and Mohanty S (2020) Population genetic structure and diversity analysis in economically important Pandanus odorifer (Forssk.) Kuntze accessions employing ISSR and SSR markers. Industrial Crops and Products 143: 1–12.

    Article  CAS  Google Scholar 

  • Nei M and Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America 76: 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni J, Colowit PM and Mackill DJ (2002) Evaluation of genetic diversity in rice subspecies using microsatellite markers. Crop Science 42: 601–607.

    Article  CAS  Google Scholar 

  • Ogwu MC, Osawaru ME and Ahana CM (2014) Challenges in conserving and utilizing plant genetic resources (PGR). International Journal of Genetics and Molecular Biology 6: 16–23.

    Article  Google Scholar 

  • Olson M, Hood L, Cantor C and Botstein D (1989) A common language for physical mapping of the human genome. Science 245: 1434–1435.

    Article  CAS  PubMed  Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Lakshmi KL, Sharma S, Gupta V, Pradhan AK and Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: Homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9: 1–19.

    Article  CAS  Google Scholar 

  • Paran I and Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theoretical and Applied Genetics 85: 985–993.

    Article  CAS  PubMed  Google Scholar 

  • Patra BC and Dhua SR (2003) Agro-morphological diversity scenario in upland rice germplasm of Jeypore tract. Genetic Resources and Crop Evolution 50: 825–828.

    Article  Google Scholar 

  • Peakall R and Smouse PE (2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6: 288–295.

    Article  Google Scholar 

  • Peakall R and Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez GA, Tongyoo P, Chunwongse J, de Jong H, Wongpraneekul A, Sinsathapornpong W and Chuenwarin P (2021) Genetic diversity and population structure of ridge gourd (Luffa acutangula) accessions in a Thailand collection using SNP markers. Scientific Reports 11: 1–12.

    Article  CAS  Google Scholar 

  • Pfeiffer WH and McClafferty B (2007) HarvestPlus: Breeding crops for better nutrition. Crop Science 47: 88–105.

    Article  Google Scholar 

  • Pinto TT, Ogliari JB and Maghelly OR (2019) Phenotypic characterization of dryland rice (Oryza sativa L.) germplasm conserved in situ (on farm) in a crop-diversity microcenter in southern Brazil. Genetic Resources and Crop Evolution 66: 415–427.

    Article  CAS  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S and Rafalski A (1996) The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding 2: 225–238.

    Article  CAS  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/. Accessed 19 Nov 2020

    Google Scholar 

  • Ramchander S, Leon MTAP, Souframanien J and Pillai MA (2021) Genetic diversity allelic variation and marker trait associations in gamma irradiated mutants of rice (Oryza sativa L). International Journal of Radiation Biology 2021: 1–31.

    Google Scholar 

  • Rao CR (1952) Advance Statistical Methods in Biometric Research. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Rao VR and Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 86: 1–19.

    Google Scholar 

  • Rathi S, Yadav RNS and Sarma RN (2010) Variability in Grain Quality Characters of Upland Rice of Assam, India. Rice Science 17: 330–333.

    Article  Google Scholar 

  • Ringnér M (2008) What is principal component analysis? Nature Biotechnology 26: 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues PS, Souza MM, Melo CAF, Pereira TNS and Corrêa RX (2018) Karyotype diversity and 2C DNA content in species of the Caesalpinia group. BMC Genetics 19: 1–10.

    Article  CAS  Google Scholar 

  • Salem KFM and Sallam A (2016) Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes. Comptes Rendus Biologies 339: 1–9.

    Article  PubMed  Google Scholar 

  • Salgotra RK, Gupta BB, Bhat JA and Sharma S (2015) Genetic diversity and population structure of basmati rice (Oryza sativa L.) Germplasm collected from North Western Himalayas using trait linked SSR markers. PLoS One 10: 1–19.

    Article  CAS  Google Scholar 

  • Schulman AH (2007) Molecular markers to assess genetic diversity. Euphytica 158: 313–321.

    Article  CAS  Google Scholar 

  • Sester M, Raveloson H, Tharreau D and Becquer T (2019) Difference in blast development in upland rice grown on an Andosol vs a Ferralsol. Crop Protection 115: 40–46.

    Article  Google Scholar 

  • Sharma A, Sekhon BS, Sharma S and Kumar R (2019) Newly isolated intervarietal garden pea (Pisum sativum L.) progenies (F7) under north western Himalayan conditions of India. Experimental Agriculture 56: 76–87.

    Article  Google Scholar 

  • Sheoran N, Ganesan P, Mughal NM, Yadav IS and Kumar A (2021) Genome assisted molecular typing and pathotyping of rice blast pathogen Magnaporthe oryzae, reveals a genetically homogenous population with high virulence diversity. Fungal Biology 9: 733–747.

    Article  CAS  Google Scholar 

  • Singh AK, Rana MK, Singh S, Kumar S, Kumar R and Singh R (2014) CAAT box- derived polymorphism (CBDP): A novel promoter -targeted molecular marker for plants. Journal of Plant Biochemistry and Biotechnology 23: 175–183.

    Article  CAS  Google Scholar 

  • Singh HP, Basandrai D, Rathour R and Basandrai AK (2021) Inheritance and allelic relationship between genes conferring resistance to Pyricularia oryza in rice. Indian Phytopathology 2021: 1–8.

    CAS  Google Scholar 

  • Singh M, Kumar S, Basandrai AK, Basandrai D, Malhotra N, Saxena DR, Gupta D, Sarker A and Singh K 2020. Evaluation and identification of wild lentil accessions for enhancing genetic gains of cultivated varieties. PLoS One 15: 1–14.

    Google Scholar 

  • Sohrabi M, Rafii MY, Hanafi MM, Siti Nor Akmar A and Latif MA (2012) Genetic diversity of upland rice germplasm in malaysia based on quantitative traits. The Scientific World Journal 2012: 1–9.

    Article  CAS  Google Scholar 

  • Srivastava A, Gupta S, Shanker K, Gupta N, Gupta AK and Lal RK (2020) Genetic diversity in Indian poppy (P. somniferum L.) germplasm using multivariate and SCoT marker analyses. Industrial Crops and Products 144: 112050.

    Article  CAS  Google Scholar 

  • Sutthiphai T, Damchuay K, Neupane RC, Longya A, Sriwongchai T, Songkumarn P, Parinthawong N, Darwell K and Jantasuriyarat C (2021) Genetic variation of avirulence genes (AVR–Pi9, AVR–Pik, AVR–Pita1) and genetic diversity of rice blast fungus Pyricularia oryzae, in Thailand. Plant Pathology 2021: 1–12.

    Google Scholar 

  • Suvi WT, Shimelis H, Laing M, Mathew I and Shayanowako AIT (2019) Assessment of the genetic diversity and population structure of rice genotypes using SSR markers. Acta Agriculturae Scandinavica, Section B–Soil & Plant Science 70: 76–86.

    Google Scholar 

  • Swingland IR (2001) Biodiversity, Definition of. Encyclopedia Biodiversity 1: 377–391.

    Article  Google Scholar 

  • Tang R, Cui D, Zhou J, Li W, Ma X, Han B, Guo X, Zhao Z and Han L (2021) Comparative analysis of genetic diversity of rice (Oryza sativa L) varieties cultivated in different periods in China. Genetic Resources and Crop Evolution 68: 1439–1451.

    Article  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Molecular Biology Reporter 1: 3–8.

    Article  CAS  Google Scholar 

  • Tanksley SD and McCouch SR (1997) Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  • Targońska M, Bolibok-Brągoszewska H and Rakoczy-Trojanowska M (2016) Assessment of Genetic Diversity in Secale cereale Based on SSR Markers. Plant Molecular Biology Reporter 34: 37–51.

    Article  PubMed  Google Scholar 

  • Tyagi V and Dhillon SK (2016) Water-Use-Efficient Cytoplasmic Male Sterility Analogs in Sunflower. Journal of Crop Improvement 30: 516–525.

    Article  CAS  Google Scholar 

  • Vavilov N (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botonica 13: 1–366.

    Google Scholar 

  • Verma N, Jena SN, Shukla S and Yadav K (2016) Genetic diversity, population structure and marker trait associations for alkaloid content and licit opium yield in India-wide collection of poppy (Papaver somniferum L.). Plant Gene 7: 26–41.

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee Theo Van De, Hornes M, Friters A, Pot J, Paleman J, Kuiper M and Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhang B and Lu Q (2009) Conserved region amplification polymorphism (CoRAP), a novel marker technique for plant genotyping in salvia miltiorrhiza. Plant Molecular Biology Reporter 27: 139–143.

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Jia X, Tian Z, Wang Yongfu Wang C, Zhang H, Liu X, Zhao J, Deng P and Ji W (2021) Chromosome karyotype and stability of new synthetic hexaploid wheat. Molecular Breeding 41: 1–12.

    Article  CAS  Google Scholar 

  • Weeden NF and Wendel JF (1989) Genetics of Plant Isozymes. Isozymes in Plant Biology 46–72.

  • Weir BS (1990) Genetic data analysis. Methods for discrete population genetic data. Sinauer Associates, Inc. Publishers.

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA and Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531–6535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter P and Kahl G (1995) Molecular marker technologies for plant improvement. World Journal of Microbiology and Biotechnology 11: 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Wu KS, Jones R, Danneberger L and Scolnik PA (1994) Detection of microsatellite polymorphisms without cloning. Nucleic Acids Research 22: 3257–3258.

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC and Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705–708.

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Singh A, Singh MR, Goel N, Vinod KK, Mohapatra T and Singh AK (2013) Assessment of genetic diversity in Indian rice germplasm (Oryza sativa L.): Use of random versus trait-linked microsatellite markers. Journal of Genetics 92: 545–557.

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Cheng C, Zheng X, Ye X, Ye N and Huang F (2020) Identification and fine mapping of a major QTL, qHD19, that plays pleiotropic roles in regulating the heading date in rice. Molecular Breeding 40: 1–12.

    Article  CAS  Google Scholar 

  • Zafar-Pashanezhad M, Shahbazi E, Golkar P and Shiran B (2020) Genetic variation of Eruca sativa L. genotypes revealed by agro-morphological traits and ISSR molecular markers. Industrial Crops and Products 145: 111992.

  • Zietkiewicz E, Rafalski A and Labuda D (1994) Genome Fingerprinting by Simple Sequence Repeat (SSR)-Anchored Polymerase Chain Reaction Amplification. Genomics 20: 176–183.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to all reviewers whose critical comments and suggestions helped to improve the quality of this article. The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hausila Prasad Singh.

Ethics declarations

Competing interest

The authors of this article declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H.P., Raigar, O.P. & Chahota, R.K. Estimation of genetic diversity and its exploitation in plant breeding. Bot. Rev. 88, 413–435 (2022). https://doi.org/10.1007/s12229-021-09274-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-021-09274-y

Keywords

Navigation