Skip to main content
Log in

Influence of Mercerization on the Physical and Mechanical Properties of Polymeric Composites Reinforced with Amazonian Fiber

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Natural fiber has been an attractive alternative as reinforcement in polymeric composites. However, their physical properties can be impaired due to the hydrophilic behavior of the vegetal fibers: the weak bonds at the interface fiber/matrix emerge due to the hydrophobic behavior of some polymeric matrices. This paper aims to evaluate the influence of mercerization process in Leopoldinia piassaba fibers on the physical, mechanical, thermal, morphological, and accelerated aging properties of polyurethane (PU)-based composites produced by the thermoforming process. The experimental design (22+1) was applied considering the parameters NaOH Treatment and %(PU)Resin. The NaOH Treatment consisted of 5 % and 10 % NaOH solution for fibers mercerization, and %(PU)Resin consisted of different amounts of PU (15 %, 17.5 % and 20 %). The mercerization process chemically modified the interface fiber/matrix and improved the resistance of the composite to screw withdraw strength, ranging from 573 N to 1019 N, and from 574 N to 1648 N considering Surface and Top, respectively. According to Scanning Electron Microscopy (SEM) analysis, the mercerization process also improved the fiber/matrix adherence and reduced pores, resulting in swelling decreasing and thermal conductivity increasing. Furthermore, the mean thickness swelling (TS) value ranged from 6 to 15 % and was not statistically different after accelerated aging. The developed composites containing untreated fibers showed thermal conductivity values similar to the commercial medium density fiberboard (MDF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Bernardo, M. C. Gomes, and J. de Brito, Waste Manage., 49, 156 (2016).

    Article  Google Scholar 

  2. G. Hammes, E. D. De Souza, C. M. T. Rodriguez, R. H. J. Millan, and J. C. M. Herazo, J. Clean. Prod., 248, 119212 (2020).

    Article  Google Scholar 

  3. L. C. C. Demosthenes, L. F. C. Nascimento, S. N. Monteiro, U. O. Costa, F. G. C. Filho, F. S. da Luz, M. S. Oliveira, F. J. H. T. V. Ramos, A. C. Pereira, and F. O. Braga, J. Mater. Res. Technol., 9, 115 (2020).

    Article  CAS  Google Scholar 

  4. J. B. Dawit, Y. Regassa, and H. G. Lemu, Results Mater., 5, 100054 (2020).

    Article  Google Scholar 

  5. A. Mahieu, S. Alix, and N. Leblanc, Ind. Crop. Prod., 130, 371 (2019).

    Article  CAS  Google Scholar 

  6. M. Ramesh, K. Palanikumar, and K. Hemachandra Reddy, Renew. Sust. Energ. Rev., 79, 558 (2017).

    Article  Google Scholar 

  7. D. Becker, A. C. Kleinschmidt, P. S. Balzer, and V. Soldi, Polímeros, 21, 7 (2011).

    Article  CAS  Google Scholar 

  8. J. R. M. d’Almeida, R. C. M. P. Aquino, and S. N. Monteiro, Compos. Part A Appl. Sci. Manuf., 37, 1473 (2006).

    Article  CAS  Google Scholar 

  9. R. C. M. P. Aquino, J. R. M. D’Almeida, and S. N. Monteiro, J. Mater Sci. Lett., 20, 1017 (2001).

    Article  CAS  Google Scholar 

  10. G. C. O. Filho, R. C. S. Mota, A. C. R. da Conceição, M. A. Leaão, and O. O. A. Filho, Compos. B. Eng., 162, 73 (2019).

    Article  CAS  Google Scholar 

  11. J. R. Dutra, S. L. M. R. Filho, A. L. Christoforo, T. H. Panzera, and F. Scarpa, Thin-Walled Structures, 143, 106191 (2019).

    Article  Google Scholar 

  12. A. G. Adevini, D. V. Onifade, J. O. Ighalo, and A. S. Adeoye, Compos. B. Eng., 176, 107305 (2019).

    Article  CAS  Google Scholar 

  13. A. Elzubair and J. C. M. Suarez, Mater. Sci. Eng. A, 557, 29 (2012).

    Article  CAS  Google Scholar 

  14. D. C. O. Nascimento, A. S. Ferreira, S. N. Monteiro, R. C. M. P. Aquino, and S. G. Kestur, Compos. Part A Appl. Sci. Manuf., 43, 353 (2012).

    Article  CAS  Google Scholar 

  15. A. S. Fonseca, J. Raabe, L. M. Dias, A. E. R. Baliza, T. G. Costa, L. E. Silva, R. P. Vasconcelos, J. M. Marcocini, H. Savastano Jr., L. M. Mendes, A. Yu, W. J. Orts, and G. H. D. Tonoli, Waste Biomass Valori., 10, 3125 (2019).

    Article  CAS  Google Scholar 

  16. S. Thomas, Y. K. Woh, R. Wang, and K. L. Goh, Procedia Eng., 200, 206 (2017).

    Article  Google Scholar 

  17. C. Merlini, V. Soldi, and G. M. O. Barra, Polym. Test., 30, 833 (2011).

    Article  CAS  Google Scholar 

  18. J. Gassan and A. K. Bledzki, Compos. Part A Appl. Sci. Manuf., 28, 1001 (1997).

    Article  Google Scholar 

  19. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. B. Eng., 43, 2883 (2012).

    Article  CAS  Google Scholar 

  20. I. A. T. Razera and E. Frollini, J. Appl. Polym. Sci., 91, 1077 (2004).

    Article  CAS  Google Scholar 

  21. E. Frollini, A. L. Leão, and L. H. C. Mattoso, “Natural Polymers and Agrofibers Based Composites”, pp.229–255, Embrapa Instrumentação Agropecuária, São Carlos, 2000.

    Google Scholar 

  22. S. Kalia, B. S. Kaith, and I. Kaur, Polym. Eng. Sci., 49, 1253 (2009).

    Article  CAS  Google Scholar 

  23. E. S. Rodriguez, P. M. Stefani, and A. Vazquez, J. Compos. Mater., 41, 1729 (2007).

    Article  CAS  Google Scholar 

  24. T. T. L. Doan, S. L. Gao, and E. Mäder, Compos. Sci. Technol., 66, 952 (2006).

    Article  CAS  Google Scholar 

  25. B. B. Neto, I. S. Scarminio, and R. E. Burns, Data Handl. Sci. Technol., 25, 9 (2005).

    Article  Google Scholar 

  26. NBR 14810:2, “Medium Density Particleboards Part 2: Requirements and Test Methods”, Brazilian Association of Technical Standards, Rio de Janeiro, BR, 2018.

    Google Scholar 

  27. PRP-108, “Performance Standards and Qualification Policy for Wood Structural Panel”, APA-The Engineered Wood Association, Tacoma, WA, 2018.

    Google Scholar 

  28. ASTM C177, “Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus”, AST International, West Conshocken, PA, 2019.

    Google Scholar 

  29. V. Rebelo, Y. da Silva, S. Ferreira, R. T. Filho, and V. Giacon, Polímeros, 29, 13 (2019).

    Article  Google Scholar 

  30. T. M. Maloney, Forest Prod. J., 46, 19 (1996).

    CAS  Google Scholar 

  31. J. Fiorelli, S. B. Bueno, and M. R. Cabral, Constr. Build. Mater., 205, 1 (2019).

    Article  CAS  Google Scholar 

  32. J. K. Fink, “Reactive Polymers Fundamentals and Applications”, 1st ed., pp.69–138, William Andrew Publishing, Norwich, New York, 2005.

    Book  Google Scholar 

  33. S. Murata, T. Nakajima, N. Tsuzaki, M. Yasuda, and T. Kato, Polym. Degrad. Stab., 61, 527 (1998).

    Article  CAS  Google Scholar 

  34. A. Kutnar, F. A. Kamke, and M. Sernek, Wood Sci. Technol., 43, 57 (2009).

    Article  CAS  Google Scholar 

  35. M. S. Sreekala, M. G. Kumaran, and S. Thomas, Compos. Part A Appl. Sci. Manuf., 33, 763 (2002).

    Article  Google Scholar 

  36. K. Yorseng, S. M. Rangappa, H. Pulikkalparambil, S. Siengchin, and J. Parameswaranpillai, Constr. Build. Mater., 235, 117464 (2020).

    Article  CAS  Google Scholar 

  37. U. Šebenik and M. Krajnc, Int. J. Adhes. Adhes., 27, 527 (2007).

    Article  CAS  Google Scholar 

  38. W. E. Skiens, Radiat. Phys. Chem., 15, 47 (1980).

    CAS  Google Scholar 

  39. A. Boubakri, N. Guermazi, K. Elleuch, and H. F. Ayedi, Mater. Sci. Eng. A, 527, 1649 (2010).

    Article  CAS  Google Scholar 

  40. F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, “Fundamentals of Heat and Mass Transfer”, 6th ed., John Wiley & Sons, New York, 2016.

    Google Scholar 

  41. S. Sair, A. Oushabi, A. Kammouni, O. Tanane, Y. Abboud, and A. El Bouari, Case Stud. Constr. Mater., 8, 203 (2018).

    Google Scholar 

  42. K. Joseph, S. Thomas, and C. Pavithran, Polymer, 37, 5139 (1996).

    Article  CAS  Google Scholar 

  43. V. G. Geethamma, K. T. Mathew, R. Lakshminarayanan, and S. Thomas, Polymer, 39, 1483 (1998).

    Article  CAS  Google Scholar 

  44. R. Gauthier, C. Joly, A. C. Coupas, H. Gauthier, and M. Escoubes, Polym. Compos., 19, 287 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) and Pró-Reitoria de Pesquisa (PROPESP/UFAM) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Mansanares Giacon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacon, V.M., Rebelo, V.S.M., dos Santos, G.M. et al. Influence of Mercerization on the Physical and Mechanical Properties of Polymeric Composites Reinforced with Amazonian Fiber. Fibers Polym 22, 1950–1956 (2021). https://doi.org/10.1007/s12221-021-0460-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0460-9

Keywords

Navigation