Skip to main content
Log in

Experimental Study of the Processes of Formation, Drift and Levitation of Vapor–Gas Bubbles in Water Containing Surfactant Under the Action of Ultrasound

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

The work is devoted to the investigation of the peculiarities of the formation, dynamics and coalescence of vapor–gas bubbles as a result of continuous ultrasonic (US) exposure to a liquids containing anionic surfactant of various concentrations. It is found that large bubbles of millimeter size which are formed in pure water due to coalescence processes, freely rise to the surface. With time, the number of bubbles in water decreases according to a law close to an inverse proportionality. In the presence of surfactant, the area of bubbles recorded by the camera does not change over time; this is apparently associated with the formation of only small bubbles of the order of ten microns, which is caused by the process of inhibition of coalescence by surfactant. Small bubbles are not able to rise to the surface, due to the prevalence of viscous forces over the buoyancy force. Thus, it can be supposed that the surfactant reduces the rate of the liquid degassing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asakura, Y., Nishida, T., Matsuoka, T., Koda, S.: Effects of ultrasonic frequency and liquid height on sonochemical efficiency of largescale sonochemical reactors. Ultrason. Sonochem. 15(3), 244–250 (2008)

    Article  Google Scholar 

  • Bremond, N., Arora, M., Ohl, ClausDieter, Lohse, D.: Controlled multibubble surface cavitation. Phys. Rev. Lett. 96(22), 224501 (2006)

    Article  Google Scholar 

  • Castro, L. A., Hoyos, M.: Determination of the secondary bjerknes force in acoustic resonators on ground and in microgravity conditions. Microgravity Sci. Technol. 28(1), 11–18 (2016)

  • Chakraborty, J., Sarkar, J., Kumar, Ravi., Madras, G.: Ultrasonic degradation of polybutadiene and isotactic polypropylene. Polym. Degrad. Stab. 85(1), 555–558 (2004)

  • Crawford, A.E.: High power sonar transducers. Ultrasonics 5(3), 150–154 (1967)

    Article  Google Scholar 

  • Emre, A.N., Hwang, J.Y., Cahit H.: Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. Int. J. Min. Proc. 91(1–2), 1–13 (2009)

  • Esrafili, L., Tehrani, A.A., Morsali A., et al.: Ultrasound and solvothermal synthesis of a new urea-based metal-organic framework as a precursor for fabrication of cadmium (II) oxide nanostructures. Inorg. Chim. Acta. 484, 386–393 (2019)

  • Gungoren, C., Ozdemir, O., Wang, X et al.: Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrason. Sonochem. 52, 446–454 (2019)

  • Haiyan, Z., Francesca, C., Muthupandian, A.: Ultrasound-assisted synthesis of cross-linked poly (ethylene glycol) nanostructures with hydrophobic core and hydrophilic shell. Macromol. Chem. Phys. 219(23), 1800353 (2018 )

  • Harkal, U.D., Gogate, P.R., Pandit, A.B., Shenoy, M.A.: Ultrasonic degradation of poly (vinyl alcohol) in aqueous solution. Ultrason. Sonochem. 13(5), 423–428 (2006)

    Article  Google Scholar 

  • Hasegawa, K., Abe, Y., Kaneko, A., et al.: Visualization measurement of streaming flows associated with a single-acoustic levitator. Microgravity Sci. Technol. 21(1), 9 (2009)

    Article  Google Scholar 

  • Hasegawa, K., Abe, Y., Fujiwara, A., et al.: External flow of an acoustically levitated droplet. Microgravity Sci. Technol. 20(3–4), 261 (2008)

    Article  Google Scholar 

  • Hassanzadeh, A., Sajjady, S.A., Gholami, H et al.: An improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation. Minerals. 10(7), 619 (2020)

  • Hu, Y., Zhujun, Z., Chunyan, Y.: Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method. Ultrason. Sonochem. 15(5), 665–672 (2008)

    Article  Google Scholar 

  • Iliev, Tz. H., Dushkin C.D.: Dynamic surface tension of micellar solutions studied by the maximum bubble pressure method. 1. Experiment. Colloid Polym. Sci. 270(4), 370–376 (1992)

  • Jaschke, M., Butt, H.J., Gaub, H.E., Srinivas, Manne.: Surfactant aggregates at a metal surface. Langmuir. 13(6), 1381–1384 (1997)

  • Kauer, M., Belova-Magri, V., Cairo´s, C. et al.: Visualization and optimization of cavitation activity at a solid surface in high frequency ultrasound fields. Ultrason. Sonochem. 34, 474–483 (2017)

  • Khanal, S.K., Grewell, D., Sung, S., Van Leeuwen, J.: Ultrasound applications in wastewater sludge pretreatment: a review. Critic. Rev. Environ. Sci. Technol. 37(4), 277–313 (2007)

  • Lee, J., Kentish, S., Matula, T.J., Ashokkumar, M.: Effect of surfactants on inertial cavitation activity in a pulsed acoustic field. J. Phys. Chem. B 109(35), 16860–16865 (2005)

    Article  Google Scholar 

  • Manglik, R.M., Wasekar, V. M., Zhang, J.: Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp. Therm. Fluid Sci. 25(1–2) 55–64 (2001)

  • Maria, S., Mikko, K., Mikko, H.: Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl2). J. Phys. Chem. B 113(17), 5863–5870 (2009)

    Article  Google Scholar 

  • Mao, Y., Bu, X., Peng, Y., et al.: Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite. Fuel 259, 116270 (2020)

    Article  Google Scholar 

  • McKenzie, T.G., Karimi, F., Ashokkumar, M., Qiao, G.G.: Ultrasound and sonochemistry for radical polymerization: Sound synthesis. Chem. A. Euro. J. 25(21) 5372–5388 (2019)

  • Ozkan Safak Gokhan: Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel 93, 576–580 (2012)

    Article  Google Scholar 

  • Rybkin, K.A., Bratukhin, Yu.K., Lyubimova, T.P., et al.: Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions. J. Phys: Conf. Ser. 879, 012026 (2017)

    Google Scholar 

  • Shu, K., Xu, L.H., Wu, H., et al.: Effects of ultrasonic pre-treatment on the flotation of ilmenite and collector adsorption. Miner. Eng. 137, 124–132 (2019)

    Article  Google Scholar 

  • Thangaraj, P., Viswanathan, M.R., Balasubramanian, K., et al.: Ultrasound assisted synthesis of morphology tunable rGO: ZnO hybrid nanostructures and their optical and UV-A light driven photocatalysis. J. Lumin. 186, 53–61 (2017)

  • Vahid, S., Ali, M.: Facile preparation of nanocubes zinc-based metalorganic framework by an ultrasound-assisted synthesis method; precursor for the fabrication of zinc oxide octahedral nanostructures. Ultrason. Sonochem. 40, 921–928 (2018)

    Article  Google Scholar 

  • William, B., Zimmerman, V.T., Simon, B., Himiyage Bandulasena, C.H.: Microbubble generation. Recent. Pat. Eng. 2(1), 1–8 (2008)

  • Wu, H., Fang, S., Shu, K., et al.: Selective flotation and adsorption of ilmenite from titanaugite by a novel method: Ultrasonic treatment. Powder Technol. 363, 38–47 (2020)

    Article  Google Scholar 

  • Xiong, H.M., Shchukin, D.G., Möhwald, H. et al.: Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium (II) Angewandte Chemie. 121(15), 2765–2769 (2009)

  • Yasuda, K., Torii, T., Yasui, K., et al.: Enhancement of sonochemical reaction of terephthalate ion by superposition of ultrasonic fields of various frequencies. Ultrason. Sonochem. 14(6), 699–704 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The reported study was funded by RFBR, project number 19-31-90138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Fattalov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattalov, O., Lyubimova, T., Rybkin, K. et al. Experimental Study of the Processes of Formation, Drift and Levitation of Vapor–Gas Bubbles in Water Containing Surfactant Under the Action of Ultrasound. Microgravity Sci. Technol. 33, 24 (2021). https://doi.org/10.1007/s12217-021-09873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09873-9

Keywords

Navigation