Skip to main content
Log in

An inertial-viscosity algorithm for solving split generalized equilibrium problem and a system of demimetric mappings in Hilbert spaces

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new inertial-viscosity approximation method for solving a split generalized equilibrium problem and common fixed point problem in real Hilbert spaces. The algorithm is designed such that its convergence does not require the norm of the bounded linear operator underlying the split equilibrium problem. Moreover, a strong convergence result is proved under mild conditions in real Hilbert spaces. Furthermore, we give some numerical examples to show the efficiency and accuracy of the proposed method and we also compare the performance of our algorithm with other related methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials:

Not applicable.

References

  1. Abass, H. A., Aremu, K. O., Jolaoso, L. O., Mewomo, O. T.: An Inertial forward-backward splitting method for approximating solutions of certain optimization of certain optimization problems. J. Nonlin. Funct. Anal., Article ID 6 (2020), https://doi.org/10.23952/jnfa.2020.6

  2. Ali, B., Haruna, L.Y.: Fixed point approximations of noncommutative generic 2-generalized Bregman nonspreading mappings with equilibriums. J. Nonlinear Sci. Appl. 13(6), 303–316 (2020)

    Article  MathSciNet  Google Scholar 

  3. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9, 3–11 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ansari, Q.H., Rehan, A.: Split feasibility and fixed point problems. In: Ansari, Q.H. (ed.) it Nonlinear Analysis: Approximation Theory, Optimization and Application, pp. 281–322. Springer, New York (2014)

    Chapter  MATH  Google Scholar 

  5. Aremu, K.O., Izuchuwkwu, C., Ugwunnadi, G.C., Mewomo, O.T.: On the proximal point algorithm and demimetric mappings in CAT(0) spaces. Demonstr. Math. 51, 277–294 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bryne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)

    Article  Google Scholar 

  7. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2), 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Prob. 21, 2071–2084 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol., 51, 2353–2365 (2006)

  12. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheawchan, K., Kangtunyakarn, A.: The modified split generalized equilibrium problem for quasi-nonexpansive mappings and applications. J. Inequal. Appl. 2018, 122 (2018). https://doi.org/10.1186/s13660-018-1716-9

  14. Cholamjiak, P., Shehu, Y.: Inertial forward-backward splitting method in Banach spaces with application to compressed sensing. Appl. Math. 64, 409–435 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cholamjiak, P., Thong, D.V., Cho, Y.J.: A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems. Acta Appl. Math. (2019). https://doi.org/10.1007/s10440-019-00297-7

  16. Cholamjiak, P., Suantai, S., Sunthrayuth, P.: Strong convergence of a general viscosity explicit rule for the sum of two monotone operators in Hilbert spaces. J. Appl. Anal. Comput. 9, 2137–2155 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Cholamjiak, P., Suantai, S., Sunthrayuth, P.: An explicit parallel algorithm for solving variational inclusion problem and fixed point problem in Banach spaces. Banach J. Math. Anal. 14, 20–40 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6(1), 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Eslamian, M., Saadati, R., Vahidi, J.: Viscosity iterative process for demicontractive mappings and multivalued mappings and equilibrium problems. Comp Appl Math. 36, 1239–1253 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Farid, M., Kazmi, K. R.: A new mapping for finding a common solution of split generalized equilibrium problem, variational inequality problem and fixed point problem. Korean J. Math., 27(2), 297–327 (2019)

  21. Gibali, A., Shehu, Y.: An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces. Optimization 68(1), 13–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  23. Rehman, H., Pakkaranang, N., Hussain, A., Wairojjana, N.: A modified extra-gradient method for a family of strongly pseudomonotone equilibrium problems in real Hilbert spaces. J. Math. Comput SCI-JM 22(1), 38–48 (2020)

    Article  Google Scholar 

  24. Jantakarn, K., Kaewcharoen, A.: Strong convergence theorems for mixed equilibrium problems and Bregman relatively nonexpansive mappings in reflexive Banach spaces. J. Nonlinear Sci. Appl. 14(2), 63–79 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kazmi, K.R., Raouf, A.: A class of operator equilibrium problems. J. Math. Anal. Appl. 308, 554–566 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kazmi, K.R., Khan, S.A.: Existence of solutions to a generalized system. J. Optim. Theory Appl. 142, 355–361 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kazmi, K. R., Rizvi, S. H.: Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup. Math. Sci. 7(1) (2013). https://doi.org/10.1186/2251-7456-7-1

  28. Khan, M.A.A., Cholamjiak, P.: A multi-step approximant for fixed point problem and convex optimization problem in Hadamard spaces. J. Fixed Point Theory Appl. 22, 62 (2020). https://doi.org/10.1007/s11784-020-00796-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Jolaoso, L.O., Lukumon, G.A., Aphane, M.: Convergence theorem for system of pseudomonotone equilibrium and split common fixed point problems in Hilbert spaces. Boll Unione Mat Ital (2021). https://doi.org/10.1007/s40574-020-00271-4

  30. Jolaoso, L.O., Aphane, M.: Strong convergence inertial projection and contraction method with self adaptive stepsize for pseudomonotone variational inequalities and fixed point problems. J. Inequal. Appl. (2020). Article: 261. https://doi.org/10.1186/s13660-020-02536-0

  31. Jolaoso, L.O., Taiwo, A., Alakoya, A., Mewomo, O.T.: A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem. Comput. Appl. Math. (2019). https://doi.org/10.1007/s40314-019-1014-2

  32. Maingè, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set Valued Anal. 16, 899–912 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Moudafi, A.: Split monotone variational inclusions. J. Optim. Theory Appl. 150, 275–283 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms. Opt. Lett. 8, 2099–2110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Muu, L.D., Oettli, W.: Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18, 1159–1166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Polyak, B. T.: Some methods of speeding up the convergence of iteration methods. U. S. S. R. Comput. Math, Math, Phy., 4(5), 1–17 (1964)

  38. Shehu, Y., Li, X.-H., Dong, Q.-L.: An efficient projection-type method for monotone variational inequalities in Hilbert spaces. Numer. Algorithms 84, 365–388 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Shehu, Y., Gang Cai, Iyiola, O. S.: Iterative approximation of solutions for proximal split feasibility problems. Fixed Point Theory Appl., 2015, 123 (2015)

  40. Suantai, S., Pholasa, N., Cholamjiak, P.: Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems. RACSAM 113, 1081–1099 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Suantai, S., Shehu, Y., Cholamjiak, P., Iyiola, O.S.: Strong convergence of a self-adaptive method for the split feasibility problem in Banach spaces. J. Fixed Point Theory Appl. 20, 68 (2018). https://doi.org/10.1007/s11784-018-0549-y

    Article  MathSciNet  MATH  Google Scholar 

  42. Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems. J. Indust. Manag. Optim. 14, 1595–1615 (2018)

    Article  MathSciNet  Google Scholar 

  43. Taiwo, A., Mewomo, O. T.: Inertial-viscosity-type algorithms for solving generalized equilibrium and fixed point problems in Hilbert spaces. Viet. J. Mathem. (2020)

  44. Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space. Fixed Point Theory 19(1), 407–420 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  46. Xu, H. K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl., 26(10) (2010). Article ID 105018

  47. Zhao, J.: Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 64, 2619–2630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, J., Zhang, H.: Solving split common fixed-point problem of firmly quasi-nonexpansive mappings without prior knowledge of operators norms. Abstr. Appl. Analy. (2014). Article ID 389689

Download references

Acknowledgements

This paper was completed when L.O was visiting the Federal University of Agriculture, Abeokuta (FUNAAB). The author thanks the institution for providing their resources for the research.

Author information

Authors and Affiliations

Authors

Contributions

All authors worked equally on the results and approved the final manuscript.

Corresponding author

Correspondence to Olawale Kazeem Oyewole.

Ethics declarations

Conflict of interest

The authors declare that there is not competing interest on the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aphane, M., Jolaoso, L.O., Aremu, K.O. et al. An inertial-viscosity algorithm for solving split generalized equilibrium problem and a system of demimetric mappings in Hilbert spaces. Rend. Circ. Mat. Palermo, II. Ser 72, 1599–1628 (2023). https://doi.org/10.1007/s12215-022-00761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-022-00761-8

Keywords

Mathematics Subject Classification

Navigation