Skip to main content

Advertisement

Log in

An Iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce an algorithm for approximating solutions of split equality variational inequality problems. A convergence theorem of the proposed algorithm is established in Hilbert spaces under the assumption that the associated mapping is uniformly continuous, pseudomonotone and sequentially weakly continuous. Finally, we provide several applications of our method and provide a numerical result to demonstrate the behavior of the convergence of the algorithm. Our results extend and generalize some related results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aleyner, A., Reich, S.: Block iterative algorithms for solving convex feasibility problems in Hilbert and Banach spaces. J. Math. Anal. Appl. 343, 427–435 (2008). https://doi.org/10.1016/j.jmaa.2008.01.087

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Alternating proximal algorithms for weakly coupled minimization problems: Applications to dynamical games and PDE’s. J. Convex Anal. 15, 485–506 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Attouch, H., Cabot, A., Frankel, P., Peypouquet, J.: Alternating proximal algorithms for linearly constrained variational inequalities: application to domain decomposition for PDE’s. Nonlinear Anal. 74, 7455–7473 (2011). https://doi.org/10.1016/j.na.2011.07.066

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1995). https://doi.org/10.1137/S0036144593251710

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H., and Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. (2011), 468. https://doi.org/10.1007/978-1-4419-9467-7

  6. Boikanyo, O.A., Zegeye, H.: The split equality fixed point problem for quasi-pseudo-contractive mappings without prior knowledge of norms. Numer. Funct. Anal. Optim. 41, 1–19 (2019). https://doi.org/10.1080/01630563.2019.1675170

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Prob. 18, 441–453 (2002). https://doi.org/10.1088/0266-5611/18/2/310

    Article  MathSciNet  MATH  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms. 59, 301–323 (2010). https://doi.org/10.1007/s11075-011-9490-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space. Optim. Methods Softw. 26, 827–845 (2011). https://doi.org/10.1080/10556788.2010.551536

    Article  MathSciNet  MATH  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011). https://doi.org/10.1007/s10957-010-9757-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Cottle, R., Yao, J.: Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 75, 281–295 (1992). https://doi.org/10.1007/BF00941468

    Article  MathSciNet  MATH  Google Scholar 

  12. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems-Volume I. Springer Series in Operations Research. 1, (2003). https://doi.org/10.1007/b97544

  13. Fichera, G.: Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat., Sez. I. 7(1964)

  14. He, Y.: A new double projection algorithm for variational inequalities. J. Comput. Appli. Math. 185, 166–173 (2006). https://doi.org/10.1016/j.cam.2005.01.031

    Article  MathSciNet  MATH  Google Scholar 

  15. Hieu, D.: New subgradient extragradient methods for common solutions to equilibrium problems. Comput. Optim. Appl. 67, 571–594 (2017). https://doi.org/10.1007/s10589-017-9899-4

    Article  MathSciNet  MATH  Google Scholar 

  16. Iusem, A.: An iterative algorithm for the variational inequality problem. Comput. Appl. Math. 13, 103–114 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Iusem, A., Svaiter, B.: A variant of Korpelevich’s method for variational inequalities with a new strategy. Optimization 42, 309–321 (1997). https://doi.org/10.1080/02331939708844365

    Article  MathSciNet  MATH  Google Scholar 

  18. Jolaoso, L., Taiwo, A., Mewomo, O.: A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces. Comput. Appl. Math. (2019). https://doi.org/10.1007/s40314-019-0841-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Application. 31, (2000). https://doi.org/10.1137/1.9780898719451

  20. Korpelevich, G.: An extragradient method for finding saddle points and other problems. Matematicheskie Metody Resheniya Ékonomicheskikh Zadach. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  21. Maingé, P.-E.: A hybrid extragradient-viscosity method for monotone operators and fixed point problems. SIAM J. Control Optim. 47, 1499–1515 (2008). https://doi.org/10.1137/060675319

    Article  MathSciNet  MATH  Google Scholar 

  22. Malitsky, Y., Semenov, V.: An extragradient algorithm for monotone variational inequalities. Cybern. Syst. Anal. 50, 271–277 (2014). https://doi.org/10.1007/s10559-014-9614-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Masad, E., Reich, S.: A note on the multiple-set split feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Moudafi, A.: Alternating CQ-algorithm for convex feasibility and split fixed-point problems. J. Nonlinear Convex Anal. 15, 809–818 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Moudafi, A.: A relaxed alternating CQ-algorithm for convex feasibility. Nonlinear Anal. 79, 117–121 (2013). https://doi.org/10.1016/j.na.2012.11.013

    Article  MathSciNet  MATH  Google Scholar 

  26. Osilike, M., Igbokwe, D.I.: Weak and strong convergence theorems for fixed points of pseudocontractions and solutions of monotone type operator equations. Comput. Math. Appl. 40, 559–567 (2000). https://doi.org/10.1016/S0898-1221(00)00179-6

    Article  MathSciNet  MATH  Google Scholar 

  27. Solodov, M., Svaiter, B.: A new projection method for variational inequality problems. Soc. Ind. Appl. Math. 37, 765–776 (1999). https://doi.org/10.1137/S0363012997317475

    Article  MathSciNet  MATH  Google Scholar 

  28. Stampacchia, G.: Formes bilin’eaire coercivitives sur les ensembles convexes. C. R. Math. Acad. Sci. Paris. 258, 4413–4416 (1964)

    MATH  Google Scholar 

  29. Taiwo, A., Jolaoso, L., Mewomo, O.: Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems. Bull. Malaysian Math. Sci. Soc. 43, 1893–1918 (2019). https://doi.org/10.1007/s40840-019-00781-1

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, Y., Gibali, A.: New self-adaptive step size algorithms for solving split variational inclusion problems and its applications. Numer. Algorithms 83, 305–331 (2019). https://doi.org/10.1007/s11075-019-00683-0

    Article  MathSciNet  MATH  Google Scholar 

  31. Thong, D., Shehu, Y., Iyiola, O.: A new iterative method for solving pseudomonotone variational inequalities with non-Lipschitz operators. Comput. Appl. Math. (2020). https://doi.org/10.1007/s40314-020-1136-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Vuong, P., Shehu, Y.: Convergence of an extragradient-type method for variational inequality with applications to optimal control problems. Numer. Algorithms 81, 269–291 (2018). https://doi.org/10.1007/s11075-018-0547-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Wega, Getahun B.: Zegeye, Habtu: split equality methods for a solution of monotone inclusion problems in hilbert spaces linear and nonlinear. Analysis 5(3), 495–516 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Xu, H.K.: A variable Krasnosel’skiĭ-Mann algorithm and the multiple-set split feasibility problem. Inverse Prob. 22, 2021–2034 (2006). https://doi.org/10.1088/0266-5611/22/6/007

    Article  MATH  Google Scholar 

  35. Xu, H.K., Alghamdi, M., Shahzad, N.: Regularization for the split feasibility problem. J. Nonlinear Convex Anal. 17, 513–525 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Xu, H.K.: Iterative algorithms for nonlinear operator. J. London Math. Soc. 66, 240–256 (2002). https://doi.org/10.1112/S0024610702003332

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Prob. 26, 105018 (2010). https://doi.org/10.1088/0266-5611/26/10/105018

    Article  MathSciNet  MATH  Google Scholar 

  38. Yao, Y., Chen, R., Marino, G., Liou, Y.-C.: Applications of fixed-point and optimization methods to the multiple-set split feasibility problem. J. Appl. Math. (2012). https://doi.org/10.1155/2012/927530

    Article  MathSciNet  MATH  Google Scholar 

  39. Zeyege, H., Naseer, S.: Convergence of Mann’s type iteration method for Generalized asymptotically nonexpansive mappings. Comput. Math. Appl. 62, 4007–4014 (2011). https://doi.org/10.1016/j.camwa.2011.09.018

    Article  MathSciNet  Google Scholar 

  40. Zhao, J., Yang, Q.: Several solution methods for the split feasibility problem. Inverse Prob. 21, 1791–1799 (2005). https://doi.org/10.1088/0266-5611/21/5/017

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habtu Zegeye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwelegano, K.M.T., Zegeye, H. & Boikanyo, O.A. An Iterative method for split equality variational inequality problems for non-Lipschitz pseudomonotone mappings. Rend. Circ. Mat. Palermo, II. Ser 71, 325–348 (2022). https://doi.org/10.1007/s12215-021-00608-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-021-00608-8

Keywords

Mathematics Subject Classification

Navigation