Skip to main content
Log in

A review on actuation and sensing techniques for MEMS-based microgrippers

  • Review
  • Published:
Journal of Micro-Bio Robotics Aims and scope Submit manuscript

Abstract

Microelectromechanical system (MEMS) reveals excellent flexibility and adaptability in miniaturization devices owing to its compact dimension, low power consumption, and fine performance. As a typical type of miniaturization tool, MEMS-based robotic microgripper has been widely employed in the manipulation of tiny micro-objects, material characterizations, and so on. This paper presents the state-of-the-art survey of prevalent MEMS-based actuation and sensing techniques, which can be applied in microgrippers. Five main types of actuators are reviewed in this survey, namely, electro-thermal actuators, electrostatic actuators, shape memory alloy actuators, piezoelectric actuators, and electromagnetic actuators. A review of recent sensing techniques is also conducted, which includes four popular sensing approaches in terms of capacitive sensors, electrothermal sensors, piezoresistive sensors, and piezoelectric sensors. Their advantages, disadvantages, and applications have been discussed in detail. Some perspectives on the future development are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Mackay RE, Le HR, Keatch RP (2011) Design optimisation and fabrication of SU-8 based electro-thermal micro-grippers. J Micro-Nano Mechatron 6(1):13–22

    Article  Google Scholar 

  2. Chowdhury S, Thakur A, Wang C, Svec P, Losert W, Gupta SK (2014) Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans Autom Sci Eng 11(2):338–347

    Article  Google Scholar 

  3. Su J, Qiao H, Ou Z, Liu Z-Y (2015) Vision-based caging grasps of polyhedron-like workpieces with a binary industrial gripper. IEEE Trans Autom Sci Eng 12(3):1033–1046

    Article  Google Scholar 

  4. Deole U, Lumia R, Shahinpoor M, Bermudez M (2008) Design and test of IPMC artificial muscle microgripper. J Micro-Nano Mechatron 4(3):95–102

    Article  Google Scholar 

  5. Chang B, Shah A, Routa I, Lipsanen H, Zhou Q (2014) Low-height sharp edged patterns for capillary self-alignment assisted hybrid microassembly. J. Micro-Nano Mechatron 9(1):1–10

    Google Scholar 

  6. Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19(1):89–97

    Article  Google Scholar 

  7. Kim K, Liu X, Zhang Y, Sun Y (2008) Micronewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback. In: Proceedings of the International Conference IEEE Robotics and Automation, pp 3100–3105

  8. Beyeler F, Neild A, Oberti S, Bell D, Sun Y, Dual J, Nelson BJ (2007) Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. J Microelectromech Syst 16(1):7–15

    Article  Google Scholar 

  9. Voland BE, Heerlein H, Rangelow IW (2002) Electrostatically driven microgripper. Microelectron Eng 61:1015–1023

    Article  Google Scholar 

  10. Roch I, Bidaud P, Collard D, Buchaillot L (2003) Fabrication and characterization of an SU-8 gripper actuated by a shape memory alloy thin film. J Micromech Microeng 12(2):330–336

    Article  Google Scholar 

  11. Wei Y, Xu Q (2015) An overview of micro-force sensing techniques. Sens Actuators A Phys 234(1):359–374

    Article  Google Scholar 

  12. Molhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15(6):1265–1270

    Article  Google Scholar 

  13. Duc TC, Lau G-K, Creemer JF, Sarro PM (2008) Electrothermal microgripper with large jaw displacement and integrated force sensors. J Microelectromech Syst 17(6):1546–1555

    Article  Google Scholar 

  14. Greitmann G, Buser RA (1996) Tactile microgripper for automated handling of microparts. Sens Actuators A Phys 53(1):410–415

    Article  Google Scholar 

  15. Tibrewala A, Phataralaoha A, Buttgenbach S (2008) Simulation, fabrication and characterization of a 3D piezoresistive force sensor. Sens Actuators A Phys 147(2):430–435

    Article  Google Scholar 

  16. Bazaz SA, Khan F, Shakoor RI (2011) Design, simulation and testing of electrostatic SOI MUMPs based microgripper integrated with capacitive contact sensor. Sens Actuators A Phys 167(1):44–53

    Article  Google Scholar 

  17. Khan F, Bazaz SA, Sohail M (2010) Design, implementation and testing of electrostatic SOI MUMPs based microgripper, Microsyst. Technol. 16(11):1967–1965

    Google Scholar 

  18. Sun Y, Fry SN, Potasek DP, Bell D, Nelson BJ (2005) Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. J Microelectromech Syst 14(1):4–11

    Article  Google Scholar 

  19. Coskun MB, Moore S, Moheimani SOR, Neild A, Alan T (2014) Zero displacement microelectromechanical force sensor using feedback control. Appl Phys Lett 104(15):153–502

    Google Scholar 

  20. Lin Q, Jiang FK, Wang XQ, Xu Y, Han ZG, Tai YC, Lew J, Ho CM (2004) Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications. J Micromech Microeng 14(12):1640–1649

    Article  Google Scholar 

  21. Wang Y, Zheng J, Ren G, Zhang P, Xu C (2011) A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater Struct 20(4):045–009

    Article  Google Scholar 

  22. Hubbard NB, Culpepper ML, Howell LL (2006) Actuators for micropositioners and nanopositioners. Appl Mech Rev 59(6):324–334

    Article  Google Scholar 

  23. Huang Q, Lee N (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9(1):64

    Article  Google Scholar 

  24. Hickey R, Kujath M, Hubbard T (2002) Heat transfer analysis and optimization of two-beam microelectromechanical thermal actuators. J Vac Sci Tech A 20(3):971–974

    Article  Google Scholar 

  25. Zhu Y, Espinosa HD (2005) An electromechanical material testing system for in situ electron microscopy and applications. Proc Natl Acad Sci 102(41):14504–14508

    Article  Google Scholar 

  26. Zhu Y, Corigliano A, Espinosa HD (2006) A thermal actuator for nanoscale in situ microscopy testing: design and characterization. J Micromech Microeng 16(2):242–253

    Article  Google Scholar 

  27. Guan C, Zhu Y (2010) An electrothermal microactuator with Z-shaped beams. J Micromech Microeng 20 (8):085–014

    Article  Google Scholar 

  28. Mankame N, Ananthasuresh G (2001) Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J Micromechan Microeng 11(5):452– 462

    Article  Google Scholar 

  29. Zhang R, Chu J, Wang HX, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. J Microelectromech Syst 19(1):89–97

    Google Scholar 

  30. Chronis N, Lee LP (2005) Electrothermally activated SU-8 microgripper for single cell manipulation in solution. J Microelectromech Syst 14(4):857–863

    Article  Google Scholar 

  31. Zhang R, Chu J, Chen Z (2011) A novel SU-8 electrothermal microgripper based on type synthesis of kinematic chain method. In: Proceedings 16th International Conference Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), pp 466–469

  32. Solano B, Wood D (2007) Design and testing of a polymeric microgripper for cell manipulation. Microelectro Eng 84(5):1219–1222

    Article  Google Scholar 

  33. Chu LL, Gianchandani YB (2003) A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing. J Micromech Microeng 13(2):297–285

    Article  Google Scholar 

  34. Khazaai JJ, Qu H, Shillor M, Smith L (2011) Design and fabrication of electro-thermally activated micro gripper with large tip opening and holding force. In: Proceedings IEEE Sensors Limerick, pp 1445–1448

  35. Yang S, Xu Q (2016) Design of a microelectromechanical systems microgripper with integrated electrothermal actuator and force sensor. Int J Adv Robot Sys 5:13

    Google Scholar 

  36. Xi X, Clancy T, Wu X, Sun Y, Liu X (2015) A MEMS XY-stage with sub-nanometer positioning resolution, In: Proceedings 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp 988–993

  37. Krishnamoorthy U, Lee D, Solgaard O (2003) Self-aligned vertical electrostatic combdrives for micromirror actuation. J Microelectromech Syst 12(4):458–464

    Article  Google Scholar 

  38. Lee AP, McConaghy CF, Sommargren G, Krulevitch P, Campbell EW (2003) Vertical-actuated electrostatic comb drive with in situ capacitive position correction for application in phase shifting diffraction interferometry. J Microelectromech Syst 12(6):960–971

    Article  Google Scholar 

  39. Jensen BD, Mutlu S, Miller S, Kurabayashi K, Allen JJ (2003) Shaped comb fingers for tailored electromechanical restoring force. J Microelectromech Syst 12(3):373–383

    Article  Google Scholar 

  40. Zhao Y, Cu T (2003) Fabrication of high-aspect-ratio polymer-based electrostatic comb drives using the hot embossing technique. J Micromech Microeng 13(3):430

    Article  Google Scholar 

  41. Barbastathis G, Gregory N (2006) Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators. J Microelectromech Syst 15(4):811–821

    Article  Google Scholar 

  42. Chang H, Zhao H, Ye F, Yuan G, Xie J, Kraft M, Yuan W (2014) A rotary comb-actuated microgripper with a large displacement range. Microsyst technol 20(1):119–126

    Article  Google Scholar 

  43. Boudaoud M, Haddab Y, Le Gorrec Y (2010) Modelling of a MEMS-based microgripper: application to dexterous micrOmanipulation. In: Proceedings IEEE /RSJ International Conference on Intelligent and Robotic Systems, pp 5634– 5639

  44. Piriyanont B, Moheimani SOR, Lai Y (2013) Design, modeling, and characterization of a MEMS micro-gripper with an integrated electrothermal force sensor. In: Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 348–353

  45. Piriyanont B, Moheimani SOR (2014) MEMS rotary microgripper with integrated electrothermal force sensor. J Microelectromech Syst 23(6):1249–1251

    Article  Google Scholar 

  46. Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R (2007) Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind Robot 34(4):285–294

    Article  Google Scholar 

  47. Munasinghe KC, Bowatta BGCT, Abayarathne HYR, Kumararathna N, Maduwantha LKAH, Arachchige NMP, Amarasinghe YWR (2016) New MEMS based micro gripper using SMA for micro level object manipulation and assembling. In: Proceedings 2016 Moratuwa Engineering Research Conference (MERCon), pp 36–41

  48. AbuZaiter A, Nafea M, Ali MSM (2016) Development of a shape-memory-alloy micrOmanipulator based on integrated bimorph microactuators. Mechatronics 38:16–28

    Article  Google Scholar 

  49. Bernstein JJ, Finberg SL, Houston K, Niles LC, Chen HD, Cross EL, Li KK, Udayakumar K (1997) Micromachined high frequency ferroelectric sonar transducers. IEEE Trans Ultrason Ferroelect Freq Contr 44(5):960–969

    Article  Google Scholar 

  50. Wang LP, Wolf RA, Wang Y, Deng KK, Zou LC, Davis RJ, Trolier-McKinstry S (2003) Design, fabrication, and measurement of high-sensitivity piezoelectric microelectromechanical systems accelerometers. J Microelectromech Syst 12(4):433–439

    Article  Google Scholar 

  51. Lee SS, Reid RP, White RM (1996) Piezoelectric cantilever microphone and microspeaker. J Microelectromech Syst 5(4):238–242

    Article  Google Scholar 

  52. Maluf N (2002) An introduction to microelectromechanical systems engineering. Meas Sci Technol 13(2):229

    Article  Google Scholar 

  53. Park J, Moon W (2003) A hybrid-type micro-gripper with an integrated force sensor. Microsyst Technol 9(8):511–519

    Article  Google Scholar 

  54. Xu Q (2013) Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE Trans Autom Sci Eng 10(3):503–514

    Article  Google Scholar 

  55. Jeon C-S, Park J-S, Lee S-Y, Moon C-W (2007) Fabrication and characteristics of out-of-plane piezoelectric micro grippers using MEMS processes. Thin Solid Films 515(12):4901–4904

    Article  Google Scholar 

  56. Kim WH, Park J, Shin KS, Park KB, Seong WK, Moon CW (2005) Simulation and fabrication of silicon micro-grippers actuated by piezoelectric actuator. Mater Sci Forum 475:1885–1888

    Article  Google Scholar 

  57. Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioningy. IEEE Trans Control Syst Technol 15(5):802–823

    Article  Google Scholar 

  58. Lantz MA, Rothuizen H, Drechsler U, Haeberle W, Despont M (2007) A vibration resistant nanopositioner for mobile parallel-probe storage applications. J Microelectromech Syst 16(1):130–139

    Article  Google Scholar 

  59. Kim DH, Lee MG, Kim B, Sun Y (2005) A superelastic alloy microgripper with embedded electromagnetic actuators and piezoelectric force sensors: a numerical and experimental study. Smart Mater Struct 14(6):1256

    Google Scholar 

  60. Jia Y, Jia M, Xu Q (2014) A dual-axis electrostatically driven MEMS microgripper. Int J Adv Robot Syst 11(Article ID 187):. doi:10.5772/59677

  61. Muntwyler S, Kratochvil BE, Beyeler F, Nelson BJ (2010) Two-axis micro-tensile tester chip for measuring plant cell mechanics. In: Proceedings of IEEE Sensors, pp 2451–2454

  62. Qu J, Zhang W, Jung A, Sliva S, Liu X (2015) A MEMS microgripper with two-axis actuators and force sensors for microscale mechanical characterization of soft materials. In: Proceedings IEEE International Conference on Automation Science and Engineering (CASE), pp 1620–1625

  63. Chen D-S, Yeh P-F, Chen Y-F, Tsai C-W, Yin C-Y, Lai R-J, Tsai J-C (2014) An electrothermal actuator with two degrees of freedom serving as the arm of a MEMS gripper. IEEE Trans Ind Electron 61(10):5465–5471

    Article  Google Scholar 

  64. Sergio M, Manaresi N, Tartagni M, Guerrieri R, Canegallo R (2002) A textile based capacitive pressure sensor. In: Proceedings of IEEE Sensors, pp 1625–1630

  65. Ko C-T, Tseng S-H, Lu M. S-C (2006) A CMOS micromachined capacitive tactile sensor with high-frequency output. IEEE/ASME J Microelecromechan Syst 15(6):1708–1714

    Article  Google Scholar 

  66. Shkel YM, Ferrier NJ (2003) Electrostriction enhancement of solid-state capacitance sensing Mechatronics,. IEEE/ASME Trans Mechatron 8(3):318–325

    Article  Google Scholar 

  67. Xu Q (2015) Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sensors J 15(10):6017–6026

    Article  Google Scholar 

  68. Hogervorst1 RP, Krijnen B, Brouwer DM, Engelen JBC, Staufer U (2010) A single-mask thermal displacement sensor in MEMS. In: Proceedings of 10th International Conference on European Society Precision Engineering Nanotechnology, Delft, The Netherlands, pp 462–465

  69. Binning GK, Despont M, Lantz MA, Vettiger P (2007) Thermal movement sensor, U.S. Patent 7 186 019

  70. Durig U (2005) Fundamentals of micromechanical thermoelectric sensors. J Appl Phys 98(4):044906–1-044906-14

    Article  Google Scholar 

  71. Lantz MA, Binnig GK, Despont M, Drechsler U (2005) A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology 16(8):1089–1094

    Article  Google Scholar 

  72. Zhu Y, Bazaei A, Moheimani SOR, Yuce MR (2010) A micromachined nanopositioner with on-chip electrothermal actuation and sensing. IEEE Electron Device Lett 31(10):1161–1163

    Article  Google Scholar 

  73. Piriyanont B, Fowler AG, Moheimani SOR (2015) Force-controlled mems rotary microgripper. J Microelectromech Syst 24(4):1164–1172

    Article  Google Scholar 

  74. Mei T, Ge Y, Chen Y, Ni L, Liao W-H, Xu Y, Li WJ (1999) Design and fabrication of an integrated three-dimensional tactile sensor for space robotic applications. In: Proceedings of 12th IEEE International Conference on Micro Electro Mechanical Systems, Orlando, FL, pp 112–117

  75. Hasegawa Y, Shikida M, Shimizu T, Miyaji T, Sasaki H, Sato K, Itoigawa K (2004) A micromachined active tactile sensor for hardness detection. Sens Actuators A Phys 114(2-3):141–146

    Article  Google Scholar 

  76. Sugiyama S, Takigawa M, Igarashi I (1983) Integrated piezoresistive pressure sensor with both voltage and frequency output. Sens Actuators 4:113–120

    Article  Google Scholar 

  77. Gretillat F, Gretillat MA, de Rooij NF (1999) Improved design of a silicon micromachined gyroscope with piezoresistive detection and electromagnetic excitation. J Microelectromech Syst 8(3):243–250

    Article  Google Scholar 

  78. Kane BJ, Cutkosky MR, Kovacs GTA (2000) A traction stress sensor array for use in high-resolution robotic tactile imaging. J Microelectromech Syst 9(4):425–434

    Article  Google Scholar 

  79. Han K, Lee SH, Moon W, Park J (2006) Fabrication of the micro-gripper with a force sensor for manipulating a cell. In: Proceedings of SICE-ICASE International of Joint Conference, pp 5833– 5836

  80. Molhave K, Hansen O (2005) Electro-thermally actuated microgrippers with integrated force-feedback. J Micromech Microeng 15(6):1265–1270

    Article  Google Scholar 

  81. Chen T, Chen L, Sun L, Wang J, Li X (2008) A sidewall piezoresistive force sensor used in a MEMS gripper. In: Proceedings of 2008 IEEE International Conference on Robotics and Applications (ICIRA), pp 207–216

  82. Tadigadapa S, Mateti K (2009) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20(9):092– 001

    Article  Google Scholar 

  83. Dargahi J, Parameswaran M, Payandeh S (2000) A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments. J Microelectromech Syst 9(3):329–335

    Article  Google Scholar 

  84. Kim DH, Kim B, Kang HJ (2004) Development of a piezoelectric polymer-based sensorized microgripper for microassembly and micrOmanipulation. Microsyst Technol 10(4):275–280

    Article  Google Scholar 

Download references

Acknowledgments

The work was support by the Macao Science and Technology Development Fund under Grant No.: 090/2015/A3 and 052/2014/A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingsong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Xu, Q. A review on actuation and sensing techniques for MEMS-based microgrippers. J Micro-Bio Robot 13, 1–14 (2017). https://doi.org/10.1007/s12213-017-0098-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12213-017-0098-2

Keywords

Navigation