Skip to main content
Log in

Progress in Force-Sensing Techniques for Surgical Robots

手术机器人的力感知技术进展

  • Review
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Force sensing is vital for situational awareness and safe interaction during minimally invasive surgery. Consequently, surgical robots with integrated force-sensing techniques ensure precise and safe operations. Over the past few decades, there has been considerable progress in force-sensing techniques for surgical robots. This review summarizes the existing electrically- and optically-based force sensors for surgical robots, including piezoresistive, piezoelectric, capacitive, intensity/phase-modulated, and fiber Bragg gratings. Their principles, applications, advantages, and limitations are also discussed. Finally, we summarize our conclusions regarding state-of-the-art force-sensing technologies for surgical robotics.

摘要

力感知在微创手术中对于手术情况分析和安全交互至关重要. 因此, 集成力感知技术的手术机器人能够保证精确和安全的手术过程. 在过去的几十年里, 手术机器人的力感知技术已经取得了相当大的进展. 本文综述了目前用于手术机器人的基于电和光的力传感器, 包括压阻式、 压电式、 电容式、 强度/相位调制和光纤布拉格光栅传感器, 同时也讨论了它们的原理、 应用、 优点和局限性. 最后, 我们对于当前手术机器人力感知技术进行了总结.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PALEP J. Robotic assisted minimally invasive surgery [J]. Journal of Minimal Access Surgery, 2009, 5(1): 1.

    Article  Google Scholar 

  2. JAFFRAY B. Minimally invasive surgery [J]. Archives of Disease in Childhood, 2005, 90(5): 537–542.

    Article  Google Scholar 

  3. ORTMAIER T, DEML B, KÜBLER B, et al. Robot assisted force feedback surgery [M]//Advances in telerobotics. Berlin, Heidelberg: Springer, 2007: 361–379.

    Google Scholar 

  4. ROSEN J, HANNAFORD B, MACFARLANE M P, et al. Force controlled and teleoperated endoscopic grasper for minimally invasive surgery: Experimental performance evaluation [J]. IEEE Transactions on Bio-Medical Engineering, 1999, 46(10): 1212–1221.

    Article  Google Scholar 

  5. HE X C, HANDA J, GEHLBACH P, et al. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery [J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(2): 522–534.

    Article  Google Scholar 

  6. GAO A Z, ZHOU Y Y, CAO L, et al. Fiber Bragg grating-based triaxial force sensor with parallel flexure hinges [J]. IEEE Transactions on Industrial Electronics, 2018, 65(10): 8215–8223.

    Article  Google Scholar 

  7. AKINYEMI T O, OMISORE O M, DUAN W K, et al. Fiber Bragg grating-based force sensing in robotassisted cardiac interventions: A review [J]. IEEE Sensors Journal, 2021, 21(9): 10317–10331.

    Article  Google Scholar 

  8. MENCIASSI A, EISINBERG A, SCALARI G, et al. Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery [C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 626–631.

    Google Scholar 

  9. CUTLER N, BALICKI M, FINKELSTEIN M, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery [J]. Investigative Ophthalmology & Visual Science, 2013, 54(2): 1316–1324.

    Article  Google Scholar 

  10. LI X, LIN J Z, PANG Y, et al. Three-dimensional force sensor based on fiber Bragg grating for medical puncture robot [J]. Photonics, 2022, 9(9): 630.

    Article  MathSciNet  Google Scholar 

  11. KIM C, LEE C H. Development of a 6-DoF FBG force—moment sensor for a haptic interface with minimally invasive robotic surgery [J]. Journal of Mechanical Science and Technology, 2016, 30(8): 3705–3712.

    Article  Google Scholar 

  12. HE X C, BALICKI M, GEHLBACH P, et al. A multifunction force sensing instrument for variable admittance robot control in retinal microsurgery [C]//2014 IEEE International Conference on Robotics and Automation. Hong Kong: IEEE, 2014: 1411–1418.

    Google Scholar 

  13. BANDARI N, DARGAHI J, PACKIRISAMY M. Tactile sensors for minimally invasive surgery: A review of the state-of-the-art, applications, and perspectives [J]. IEEE Access, 2019, 8: 7682–7708.

    Article  Google Scholar 

  14. BICCHI A, CANEPA G, DE ROSSI D, et al. A sensor-based minimally invasive surgery tool for detecting tissutal elastic properties [C]//Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis: IEEE, 1996: 884–888.

    Google Scholar 

  15. PUANGMALI P, ALTHOEFER K, SENEVIRATNE L D, et al. State-of-the-art in force and tactile sensing for minimally invasive surgery [J]. IEEE Sensors Journal, 2008, 8(4): 371–381.

    Article  Google Scholar 

  16. TREJOS A L, PATEL R V, NAISH M D. Force sensing and its application in minimally invasive surgery and therapy: A survey[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010, 224(7): 1435–1454.

    Google Scholar 

  17. HELMUS M N, GIBBONS D F, CEBON D. Biocompatibility: Meeting a key functional requirement of next-generation medical devices [J]. Toxicologic Pathology, 2008, 36(1): 70–80.

    Article  Google Scholar 

  18. DEMPSEY D J, THIRUCOTE R R. Sterilization of medical devices: A review [J]. Journal of Biomaterials Applications, 1989, 3(3): 454–523.

    Article  Google Scholar 

  19. TIWANA M I, REDMOND S J, LOVELL N H. A review of tactile sensing technologies with applications in biomedical engineering [J]. Sensors and Actuators A: Physical, 2012, 179: 17–31.

    Article  Google Scholar 

  20. OKAMURA A M. Haptic feedback in robot-assisted minimally invasive surgery [J]. Current Opinion in Urology, 2009, 19(1): 102–107.

    Article  Google Scholar 

  21. WINDOW A L. Strain gauge technology [M]. 2nd ed. London: Springer, 1992.

    Google Scholar 

  22. Svoboda J A, Dorf R C. Introduction to electric circuits. [M]. 9th ed. Hoboken: Wiley, 2014.

    MATH  Google Scholar 

  23. ZAREINIA K, MADDAHI Y, GAN L S, et al. A force-sensing bipolar forceps to quantify tool-tissue interaction forces in microsurgery [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2365–2377.

    Article  Google Scholar 

  24. TREJOS A L, ESCOTO A, NAISH M D, et al. Design and evaluation of a sterilizable force sensing instrument for minimally invasive surgery [J]. IEEE Sensors Journal, 2017, 17(13): 3983–3993.

    Article  Google Scholar 

  25. BAKI P, SZÉKELY G, KÓSA G. Miniature tri-axial force sensor for feedback in minimally invasive surgery [C]//2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Rome: IEEE, 2012: 805–810.

    Google Scholar 

  26. VALDASTRI P, HOUSTON K, MENCIASSI A, et al. Miniaturized cutting tool with triaxial force sensing capabilities for minimally invasive surgery [J]. Journal of Medical Devices, 2007, 1(3): 206–211.

    Article  Google Scholar 

  27. PARK W T, KOTLANKA R K, LOU L, et al. MEMS tri-axial force sensor with an integrated mechanical stopper for guidewire applications [J]. Microsystem Technologies, 2013, 19(7): 1005–1015.

    Article  Google Scholar 

  28. BAKI P, SZÉKELY G, KÓSA G. Design and characterization of a novel, robust, tri-axial force sensor [J]. Sensors and Actuators A: Physical, 2013, 192: 101–110.

    Article  Google Scholar 

  29. BENFIELD D, YUE S C, LOU E, et al. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery [J]. Journal of Micromechanics and Microengineering, 2014, 24(8): 085008.

    Article  Google Scholar 

  30. TANAKA Y, TANAKA M, CHONAN S. Development of a sensor system for collecting tactile information [J]. Microsystem Technologies, 2007, 13(8): 1005–1013.

    Article  Google Scholar 

  31. XIN Y, TIAN H Y, GUO C, et al. PVDF tactile sensors for detecting contact force and slip: A review [J]. Ferroelectrics, 2016, 504(1): 31–45.

    Article  Google Scholar 

  32. QASAIMEH M A, SOKHANVAR S, DARGAHI J, et al. PVDF-based microfabricated tactile sensor for minimally invasive surgery [J]. Journal of Microelectrome-chanical Systems, 2009, 18(1): 195–207.

    Article  Google Scholar 

  33. SOKHANVAR S, PACKIRISAMY M, DARGAHI J. A multifunctional PVDF-based tactile sensor for minimally invasive surgery [J]. Smart Materials and Structures, 2007, 16(4): 989–998.

    Article  Google Scholar 

  34. SHARMA S, AGUILERA R, RAO J Y, et al. Piezoelectric needle sensor reveals mechanical heterogeneity in human thyroid tissue lesions [J]. Scientific Reports, 2019, 9(1): 1–9.

    Google Scholar 

  35. CHUANG C H, LI T H, CHOU I C, et al. Piezoelectric tactile sensor for submucosal tumor detection in endoscopy [J]. Sensors and Actuators A: Physical, 2016, 244: 299–309.

    Article  Google Scholar 

  36. SOKHANVAR S, PACKIRISAMY M, DARGAHI J. MEMS endoscopic tactile sensor: Toward in-situ and in-vivo tissue softness characterization [J]. IEEE Sensors Journal, 2009, 9(12): 1679–1687.

    Article  Google Scholar 

  37. ZHANG L, JU F, CAO Y F, et al. A tactile sensor for measuring hardness of soft tissue with applications to minimally invasive surgery [J]. Sensors and Actuators A: Physical, 2017, 266: 197–204.

    Article  Google Scholar 

  38. BEYELER F, MUNTWYLER S, NELSON B J. A six-axis MEMS force-torque sensor with micro-Newton and nano-newtonmeter resolution [J]. Journal of Microelectromechanical Systems, 2009, 18(2): 433–441.

    Article  Google Scholar 

  39. LEE D H, KIM U, GULREZ T, et al. A laparoscopic grasping tool with force sensing capability [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(1): 130–141.

    Google Scholar 

  40. NAGATOMO T, MIKI N. Three-axis capacitive force sensor with liquid metal electrodes for endoscopic palpation [J]. Micro & Nano Letters, 2017, 12(8): 564–568.

    Article  Google Scholar 

  41. PAYDAR O H, WOTTAWA C R, FAN R E, et al. Fabrication of a thin-film capacitive force sensor array for tactile feedback in robotic surgery [C]//2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. San Diego: IEEE, 2012: 2355–2358.

    Google Scholar 

  42. LV C H, WANG S X, SHI C Y. A high-precision and miniature fiber Bragg grating-based force sensor for tissue palpation during minimally invasive surgery [J]. Annals of Biomedical Engineering, 2020, 48(2): 669–681.

    Article  Google Scholar 

  43. POLYGERINOS P, SENEVIRATNE L D, RAZAVI R, et al. Triaxial catheter-tip force sensor for MRI-guided cardiac procedures [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 386–396.

    Article  Google Scholar 

  44. FONTANELLI G A, BUONOCORE L R, FICUCIELLO F, et al. An external force sensing system for minimally invasive robotic surgery [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1543–1554.

    Article  Google Scholar 

  45. SU H, IORDACHITA I I, TOKUDA J, et al. Fiber optic force sensors for MRI-guided interventions and rehabilitation: A review [J]. IEEE Sensors Journal, 2017, 17(7): 1952–1963.

    Article  Google Scholar 

  46. GUPTA P K, JENSEN P S, DE JUAN E Jr. Surgical forces and tactile perception during retinal microsurgery [M]//Medical image computing and computerassisted intervention - MICCAI’99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 1218–1225.

    Google Scholar 

  47. SHI C Y, LI T L, REN H L. A millinewton resolution fiber Bragg grating-based catheter two-dimensional distal force sensor for cardiac catheterization [J]. IEEE Sensors Journal, 2018, 18(4): 1539–1546.

    Article  Google Scholar 

  48. GONENC B, CHAMANI A, HANDA J, et al. 3-DOF force-sensing motorized micro-forceps for robotassisted vitreoretinal surgery [J]. IEEE Sensors Journal, 2017, 17(11): 3526–3541.

    Article  Google Scholar 

  49. SHI C Y, LI M, LV C H, et al. A high-sensitivity fiber Bragg grating-based distal force sensor for laparoscopic surgery [J]. IEEE Sensors Journal, 2020, 20(5): 2467–2475.

    Article  Google Scholar 

  50. WU Z C, GAO A Z, LIU N, et al. FBG-based triaxial force sensor integrated with an eccentrically configured imaging probe for endoluminal optical biopsy [C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 1625–1631.

    Google Scholar 

  51. MÜLLER M S, HOFFMANN L, CHRISTOPHER BUCK T, et al. Fiber Bragg grating-based force-torque sensor with six degrees of freedom [J]. International Journal of Optomechatronics, 2009, 3(3): 201–214.

    Article  Google Scholar 

  52. GAO A Z, LIU N, ZHANG H J, et al. Spiral FBG sensors-based contact detection for confocal laser endomicroscopy [J]. Biosensors and Bioelectronics, 2020, 170: 112653.

    Article  Google Scholar 

  53. LI T L, KING N K K, REN H L. Disposable FBG-based tridirectional force/torque sensor for aspiration instruments in neurosurgery [J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3236–3247.

    Article  Google Scholar 

  54. PENNY M R, HUFFORD K A, NATHAN M, et al. Dynamic control of surgical instruments in a surgical robotic system: US 11234781B2 [P]. 2022-02-01.

  55. SPINELLI A, DAVID G, GIDARO S, et al. First experience in colorectal surgery with a new robotic platform with haptic feedback [J]. Colorectal Disease, 2018. 20(3): 228–235.

    Article  Google Scholar 

  56. ATAY S, HUFFORD K A, SCHNUR P W, ET AL. Haptic user interface for robotically controlled surgical instruments: US 2022061942A1 [P]. 2022-03-03.

  57. ALLETTI S G, ROSSITTO C, CIANCI S, et al. The Senhance™ surgical robotic system (“Senhance”) for total hysterectomy in obese patients: A pilot study [J]. Journal of Robotic Surgery, 2018, 12(2): 229–234.

    Article  Google Scholar 

  58. PAPPAS T, FERNANDO A, NATHAN M. Senhance surgical system: Robotic-assisted digital laparoscopy for abdominal, pelvic, and thoracoscopic procedures [M]//Handbook of robotic and image-guided surgery. Amsterdam: Elsevier, 2020: 1–14.

    Google Scholar 

  59. KRUPA A, MOREL G, DE MATHELIN M. Achieving high-precision laparoscopic manipulation through adaptive force control [J]. Advanced Robotics, 2004, 18(9): 905–926.

    Article  Google Scholar 

  60. BALICKI M, UNERI A, IORDACHITA I, et al. Microforce sensing in robot assisted membrane peeling for vitreoretinal surgery [M]//Medical image computing and computer-assisted intervention - MICCAI 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 303–310.

    Google Scholar 

  61. KUMAR R, BERKELMAN P, GUPTA P, et al. Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation [C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings. San Francisco: IEEE, 2000: 610–617.

    Google Scholar 

  62. SO J H, SOBUCKI S, SZEWCZYK J, et al. Shared control schemes for middle ear surgery [J]. Frontiers in Robotics and AI, 2022, 9: 824716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhu Gao  (高安柱).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 62003209), the Natural Science Foundation of Shanghai (No. 21ZR1429500), the Shanghai Rising-Star Program (No. 22QC1401400), the Science and Technology Commission of Shanghai Municipality (No. 20DZ2220400), and the Open Project Fund from the Shenzhen Institute of Artificial Intelligence and Robotics for Society, China (No. AC01202005012)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Ai, X., Sun, Z. et al. Progress in Force-Sensing Techniques for Surgical Robots. J. Shanghai Jiaotong Univ. (Sci.) 28, 370–381 (2023). https://doi.org/10.1007/s12204-023-2607-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2607-x

Key words

CLC number

Document code

关键词

Navigation