Skip to main content
Log in

Novel Concentric Tube Robot Based on Double-Threaded Helical Gear Tube

基于双螺纹斜齿轮管的新型同心管机器人

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Nasopharyngeal carcinoma is a malignant tumor originating from the nasal mucosa. It is a malignant tumor of the head and neck. Concentric tube robot (CTR), as it can form a complicated shape and access hard-to-reach lesions, is often used in minimally invasive surgeries. However, some CTRs are bulky because of their transmission design. In this paper, a light CTR based on double-threaded helical gear tube is proposed. Such a CTR is less cumbersome than the traditional CTR as its actuation unit is compact and miniaturized. The mapping relationship between the gear tube attitude and motor output angle is obtained by kinematic analysis. The precision, stability, and repeatability of the driving mechanism are tested. The experimental results show that the positioning error in the translation test is less than 0.3 mm, the rolling angle error in the stability test is less than 0.6°, and the error in the translation repeatability test is less than 0.005 mm. Finally, a tip-targeting test is performed using the new CTR, which verifies the feasibility of the CTR for surgeries.

摘要

鼻咽癌是一种源于鼻黏膜的恶性肿瘤, 常发生在头颈部。同心管机器人可形成复杂的形状, 并可到达难以触及的病灶, 因此常用于微创手术。然而一些同心管机器人由于其传动设计显得笨重, 本文提出了一种基于双螺纹斜齿轮管的轻型螺旋齿轮传动装置。其驱动单元的紧凑和小型化, 使得这种同心管机器人比传统同心管机器人更轻巧。通过运动学分析, 得到了齿轮管姿态与电机输出角的映射关系。本文对驱动机构的精度、稳定性和重复性进行了测试。实验结果表明: 该系统在平移试验中的定位误差小于0.3 mm; 稳定性试验中滚动角度误差小于0.6°; 平移重复性试验误差小于0.005 mm。最后使用同心管机器人进行了尖端瞄准试验, 验证了同心管机器人用于手术的可行性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TAYLOR R H, MENCIASSI A, FICHTINGER G, et al. Medical robotics and computer-integrated surgery [M]//Springer handbook of robotics. Cham: Springer, 2016: 1657–1684.

    Chapter  Google Scholar 

  2. LIU Y, WU D, HAN F T, et al. Online adaptive identification and switching of soft contact model based on ART-II method [C]//2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 8855–8861.

    Chapter  Google Scholar 

  3. GUO J, LIU C, POIGNET P. A scaled bilateral teleoperation system for robotic-assisted surgery with time delay [J]. Journal of Intelligent & Robotic Systems, 2019, 95(1): 165–192.

    Article  Google Scholar 

  4. BURGNER-KAHRS J, RUCKER D C, CHOSET H. Continuum robots for medical applications: A survey [J]. IEEE Transactions on Robotics, 2015, 31(6): 1261–1280.

    Article  Google Scholar 

  5. BERGELES C, YANG G Z. From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots [J]. IEEE Transactions on Bio-Medical Engineering, 2014, 61(5): 1565–1576.

    Article  Google Scholar 

  6. GILBERT H B, RUCKER D C, WEBSTER III R J. Concentric tube robots: The state of the art and future directions [M]//Robotics research. Cham: Springer, 2016: 253–269.

    Chapter  Google Scholar 

  7. BURGNER J, RUCKER D C, GILBERT H B, et al. A telerobotic system for transnasal surgery [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 996–1006.

    Article  Google Scholar 

  8. ANOR T, MADSEN J R, DUPONT P. Algorithms for design of continuum robots using the concentric tubes approach: A neurosurgical example [C]//IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 667–673.

    Google Scholar 

  9. LIN F Y, BERGELES C, YANG G Z. Biometry-based concentric tubes robot for vitreoretinal surgery [C]//2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Milan: IEEE, 2015: 5280–5284.

    Google Scholar 

  10. WIRZ R, TORRES L G, SWANEY P J, et al. An experimental feasibility study on robotic endonasal telesurgery [J]. Neurosurgery, 2015, 76(4): 479–484.

    Article  Google Scholar 

  11. DWYER G, CHADEBECQ F, TELLA AMO M, et al. A continuum robot and control interface for surgical assist in fetoscopic interventions [J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1656–1663.

    Article  Google Scholar 

  12. DWYER G, COLCHESTER R J, ALLES E J, et al. Robotic control of a multi-modal rigid endoscope combining optical imaging with all-optical ultrasound [C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 3882–3888.

    Chapter  Google Scholar 

  13. LI G, PATEL N A, HAGEMEISTER J, et al. Body-mounted robotic assistant for MRI-guided low back pain injection [J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(2): 321–331.

    Article  Google Scholar 

  14. LI G, PATEL N A, LIU W Q, et al. A fully actuated body-mounted robotic assistant for MRI-guided low back pain injection [C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 5495–5501.

    Google Scholar 

  15. NAYAR N, JEONG S, DESAI J P. Design and control of 5-DoF robotically steerable catheter for the delivery of the mitral valve implant [C]//2021 IEEE International Conference on Robotics and Automation. New York: ACM, 2021: 12268–12274.

    Google Scholar 

  16. GAO Q, SUN Z L. A novel design of water-activated variable stiffness endoscopic manipulator with safe thermal insulation [J]. Actuators, 2021, 10(6): 130.

    Article  Google Scholar 

  17. SUN Z L, WANG Z, PHEE S J. Modeling and motion compensation of a bidirectional tendon-sheath actuated system for robotic endoscopic surgery [J]. Computer Methods and Programs in Biomedicine, 2015, 119(2): 77–87.

    Article  Google Scholar 

  18. LIN Z C, WU H, JIA H, et al. Fixed and sliding FBG sensors-based triaxial tip force sensing for cable-driven continuum robots [C]//2022 International Conference on Robotics and Automation. Philadelphia: IEEE, 2022: 9593–9599.

    Chapter  Google Scholar 

  19. WEBSTER R J, JONES B A. Design and kinematic modeling of constant curvature continuum robots: A review [J]. International Journal of Robotics Research, 2010, 29(13): 1661–1683.

    Article  Google Scholar 

  20. BAI S P, XING C H. Shape modeling of a concentric-tube continuum robot [C]//2012 IEEE International Conference on Robotics and Biomimetics. Guangzhou: IEEE, 2012: 116–121.

    Chapter  Google Scholar 

  21. WU L, WU K Y, REN H L. Towards hybrid control of a flexible curvilinear surgical robot with visual/haptic guidance [C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 501–507.

    Google Scholar 

  22. DUPONT P E, LOCK J, ITKOWITZ B, et al. Design and control of concentric-tube robots [J]. IEEE Transactions on Robotics, 2010, 26(2): 209–225.

    Article  Google Scholar 

  23. RUCKER D C, WEBSTER R J III, CHIRIKJIAN G S, et al. Equilibrium conformations of concentric-tube continuum robots [J]. The International Journal of Robotics Research, 2010, 29(10): 1263–1280.

    Article  Google Scholar 

  24. XU R, ASADIAN A, NAIDU A S, et al. Position control of concentric-tube continuum robots using a modified Jacobian-based approach [C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013: 5813–5818.

    Chapter  Google Scholar 

  25. BEDELL C, LOCK J, GOSLINE A, et al. Design optimization of concentric tube robots based on task and anatomical constraints [C]//IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 398–403.

    Google Scholar 

  26. BURGNER-KAHRS J, GILBERT H B, GRANNA J, et al. Workspace characterization for concentric tube continuum robots [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 1269–1275.

    Chapter  Google Scholar 

  27. WEBSTER R J, ROMANO J M, COWAN N J. Mechanics of precurved-tube continuum robots [J]. IEEE Transactions on Robotics, 2009, 25(1): 67–78.

    Article  Google Scholar 

  28. BERGELES C, GOSLINE A H, VASILYEV N V, et al. Concentric tube robot design and optimization based on task and anatomical constraints [J]. IEEE Transactions on Robotics, 2015, 31(1): 67–84.

    Article  Google Scholar 

  29. HA J, PARK F C, DUPONT P E. Achieving elastic stability of concentric tube robots through optimization of tube precurvature [C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago: IEEE, 2014: 864–870.

    Chapter  Google Scholar 

  30. SEARS P, DUPONT P. A steerable needle technology using curved concentric tubes [C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing: IEEE, 2006: 2850–2856.

    Chapter  Google Scholar 

  31. GIRERD C, MORIMOTO T K. Design and control of a hand-held concentric tube robot for minimally invasive surgery [J]. IEEE Transactions on Robotics, 2021, 37(4): 1022–1038.

    Article  Google Scholar 

  32. ROX M F, ROPELLA D S, HENDRICK R J, et al. Mechatronic design of a two-arm concentric tube robot system for rigid neuroendoscopy [J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3): 1432–1443.

    Article  Google Scholar 

  33. GUO J, LIU H C, LIANG Z C, et al. A novel actuating mechanism for concentric tube robots based on universal friction wheel sleeves [C]//2022 International Conference on Advanced Robotics and Mechatronics. Guilin: IEEE, 2022: 75–81.

    Chapter  Google Scholar 

  34. SUZUKI T, KATAYAMA Y, KOBAYASHI E, et al. Compact forceps manipulator for laparoscopic surgery [C]//2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton: IEEE, 2005: 3678–3683.

    Chapter  Google Scholar 

  35. WU L, SONG S, WU K Y, et al. Development of a compact continuum tubular robotic system for nasopharyngeal biopsy [J]. Medical & Biological Engineering & Computing, 2017, 55(3): 403–417.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Guo  (郭靖).

Additional information

Foundation item: the Project of Smart Medical Innovation and Technology Center of Guangdong University of Technology (No. ZZYZX22031), the Youth Innovative Talents Project of Guangdong Province (No. 2019GKQNCX035), and the Featured Innovation Projects of General Colleges and Universities in Guangdong Province (No. 2021KTSCX220)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, H., Li, Z. et al. Novel Concentric Tube Robot Based on Double-Threaded Helical Gear Tube. J. Shanghai Jiaotong Univ. (Sci.) 28, 296–306 (2023). https://doi.org/10.1007/s12204-023-2595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2595-x

Key words

关键词

CLC number

Document code

Navigation