Skip to main content
Log in

Shape Sensing for Single-Port Continuum Surgical Robot Using Few Multicore Fiber Bragg Grating Sensors

基于少量多核光纤光栅传感器的单孔连续体手术机器人形状感知

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

We proposed a method for shape sensing using a few multicore fiber Bragg grating (FBG) sensors in a single-port continuum surgical robot (CSR). The traditional method of utilizing a forward kinematic model to calculate the shape of a single-port CSR is limited by the accuracy of the model. If FBG sensors are used for shape sensing, their accuracy will be affected by their number, especially in long and flexible CSRs. A fusion method based on an extended Kalman filter (EKF) was proposed to solve this problem. Shape reconstruction was performed using the CSR forward kinematic model and FBG sensors, and the two results were fused using an EKF. The CSR reconstruction method adopted the incremental form of the forward kinematic model, while the FBG sensor method adopted the discrete arc-segment assumption method. The fusion method can eliminate the inaccuracy of the kinematic model and obtain more accurate shape reconstruction results using only a small number of FBG sensors. We validated our algorithm through experiments on multiple bending shapes under different load conditions. The results show that our method significantly outperformed the traditional methods in terms of robustness and effectiveness.

摘要

本文提出了一种在单孔连续体手术机器人(CSR)中使用少量多核光纤光栅(FBG)传感器进行形状感知的方法。传统的方法利用正运动学模型计算单孔CSR的形状,其受到模型精度的限制。如果将FBG传感器用于形状传感,其精度将受到传感器数量的影响,特别是在长而灵活的CSR中。为了解决这一问题,提出了一种基于扩展卡尔曼滤波(EKF)的融合方法。分别使用CSR正运动学模型和FBG传感器进行形状重建,并用EKF将两个结果融合。CSR运动模型的方法采用了正运动学模型的增量形式进行形状重建,FBG传感器的方法则采用了离散弧段假设进行形状重建。融合方法可以消除运动学模型的不准确性,仅使用少量FBG传感器即可获得更精确的形状重建结果。通过不同载荷条件下多种弯曲形状的实验验证了该算法的有效性。结果表明,该方法在鲁棒性和有效性方面明显优于传统方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CIANCI S, ROSATI A, RUMOLO V, et al. Robotic single-port platform in general, urologic, and gynecologic surgeries: A systematic review of the literature and meta-analysis [J]. World Journal of Surgery, 2019, 43(10): 2401–2419.

    Article  Google Scholar 

  2. FAHMY O, FAHMY U A, ALHAKAMY N A, et al. Single-port versus multiple-port robot-assisted radical prostatectomy: A systematic review and meta-analysis [J]. Journal of Clinical Medicine, 2021, 10(24): 5723.

    Article  Google Scholar 

  3. GARISTO J, BERTOLO R, REESE S W, et al. Minimizing minimally invasive surgery: Current status of the single-port robotic surgery in Urology [J]. Actas Urológicas Españolas (English Edition), 2021, 45(5): 345–352.

    Article  Google Scholar 

  4. COVAS MOSCHOVAS M, BHAT S, ROGERS T, et al. Applications of the da Vinci single port (SP) robotic platform in urology: A systematic literature review [J]. Minerva Urology and Nephrology, 2021, 73(1): 6–16.

    Article  Google Scholar 

  5. CHEN Y, ZHANG C, WU Z, et al. The SHURUI system: A modular continuum surgical robotic platform for multiport, hybrid-port, and single-port procedures [J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3186–3197.

    Article  Google Scholar 

  6. YU J J, HAO G B, CHEN G M, et al. State-of-art of compliant mechanisms and their applications [J]. Journal of Mechanical Engineering, 2015, 51(13): 53–68 (in Chinese).

    Article  Google Scholar 

  7. BURGNER-KAHRS J, RUCKER D C, CHOSET H. Continuum robots for medical applications: A survey [J]. IEEE Transactions on Robotics, 2015, 31(6): 1261–1280.

    Article  Google Scholar 

  8. WANG L, SIMAAN N. Geometric calibration of continuum robots: Joint space and equilibrium shape deviations [J]. IEEE Transactions on Robotics, 2019, 35(2): 387–402.

    Article  Google Scholar 

  9. GAO A, MURPHY R J, LIU H, et al. Mechanical model of dexterous continuum manipulators with compliant joints and tendon/external force interactions [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 465–475.

    Article  Google Scholar 

  10. ZHAO Q, LAI J, HUANG K, et al. Shape estimation and control of a soft continuum robot under external payloads [J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 2511–2522.

    Article  Google Scholar 

  11. REILINK R, STRAMIGIOLI S, MISRA S. Pose reconstruction of flexible instruments from endoscopic images using markers [C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012: 2938–2943.

    Google Scholar 

  12. FRANZ A M, HAIDEGGER T, BIRKFELLNER W, et al. Electromagnetic tracking in medicine: A review of technology, validation, and applications [J]. IEEE Transactions on Medical Imaging, 2014, 33(8): 1702–1725.

    Article  Google Scholar 

  13. SHI C, LUO X, QI P, et al. Shape sensing techniques for continuum robots in minimally invasive surgery: A survey [J]. IEEE Transactions on Bio-Medical Engineering, 2017, 64(8): 1665–1678.

    Article  Google Scholar 

  14. LU Y, LU B, LI B, et al. Robust three-dimensional shape sensing for flexible endoscopic surgery using multi-core FBG sensors [J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4835–4842.

    Article  MathSciNet  Google Scholar 

  15. DENASI A, KHAN F, BOSKMA K J, et al. An observer-based fusion method using multicore optical shape sensors and ultrasound images for magnetically-actuated catheters [C]//2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 50–57.

    Google Scholar 

  16. ALAMBEIGI F, PEDRAM S A, SPEYER J L, et al. SCADE: simultaneous sensor calibration and deformation estimation of FBG-equipped unmodeled continuum manipulators [J]. IEEE Transactions on Robotics, 2020, 36(1): 222–239.

    Article  Google Scholar 

  17. MOON H, JEONG J, KIM O, et al. FBG-based polymer-molded shape sensor integrated with minimally invasive surgical robots [C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 1770–1775.

    Google Scholar 

  18. HENKEN K R, DANKELMAN J, VAN DEN DOBBELSTEEN J J, et al. Error analysis of FBG-based shape sensors for medical needle tracking [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(5): 1523–1531.

    Article  Google Scholar 

  19. ZHOU Y Y, WANG Z X, WANG C Y, et al. Design and control of a motion decoupling continuum robot for single port surgery [J]. Robot, 2021, 43(4): 424–432 (in Chinese).

    Google Scholar 

  20. ZHOU Y Y, LI J H, GUO M Q, et al. Modeling and optimization analysis of a continuum robot for single-port surgery[J]. Robot, 2020, 42(3): 316–324 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu  (刘浩).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 61873257 and U20A20195), the Project of Natural Science Foundation of Liaoning Province (No. 2021-MS-033), and the Foundation of Millions of Talents Project of the Department of Human Resources and Social Security of Liaoning Province (No. 2021921037)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wang, C., Guo, W. et al. Shape Sensing for Single-Port Continuum Surgical Robot Using Few Multicore Fiber Bragg Grating Sensors. J. Shanghai Jiaotong Univ. (Sci.) 28, 312–322 (2023). https://doi.org/10.1007/s12204-023-2579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2579-x

Key words

关键词

CLC number

Document code

Navigation