Skip to main content
Log in

Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Terahertz pulse imaging of cutaneous malignant melanoma dehydrated by ethanol and embedded in paraffin was carried out across a frequency range of 0.2–1.4 THz. First, the tissue images based on the time-domain electric-field amplitude information were acquired. Then the areas of normal and cancerous tissues were determined using multi-scale, multi-azimuth and multi-structural element mathematical morphology. The physical meaning of the image was analyzed by calculation of the refractive index and absorption coefficient of cutaneous malignant melanoma in different areas. The refractive index of both normal and cancerous tissues showed anomalous dispersion. The refractive index of cancerous tissues tended to vary between 0.2 and 0.7 THz, while that of normal and fat tissues remain almost unchanged. The absorption of cancerous tissues was higher, with a maximum at 0.37 THz. We concluded that both the refractive index and absorption coefficient differ considerably between normal and cancerous tissues, and the areas of normal and abnormal tissues can be identified using THz pulse imaging combined with mathematical morphology. The method for edge detection of terahertz pulse imaging of cutaneous malignant melanoma provides a reference for the safe surgical removal of malignant tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bajwa N, Au J, Jarrahy R, Sung S, Fishbein M C, Riopelle D, Ennis D B, Aghaloo T, St John M A, Grundfest W S, Taylor Z D. Non-invasive terahertz imaging of tissue water content for flap viability assessment. Biomedical Optics Express, 2017, 8(1): 460–474

    Article  Google Scholar 

  2. Grootendorst M R, Fitzgerald A J, Brouwer de Koning S G, Santaolalla A, Portieri A, Van Hemelrijck M, Young M R, Owen J, Cariati M, Pepper M, Wallace V P, Pinder S E, Purushotham A. Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomedical Optics Express, 2017, 8(6): 2932–2945

    Article  Google Scholar 

  3. Yamaguchi S, Fukushi Y, Kubota O, Itsuji T, Ouchi T, Yamamoto S. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy. Scientific Reports 2016, 6: 30124

    Article  Google Scholar 

  4. Oh S J, Kim S H, Ji Y B, Jeong K, Park Y, Yang J, Park D W, Noh S K, Kang S G, Huh Y M, Son J H, Suh J S. Study of freshly excised brain tissues using terahertz imaging. Biomedical Optics Express, 2014, 5(8): 2837–2842

    Article  Google Scholar 

  5. Tewari P, Kealey C P, Bennett D B, Bajwa N, Barnett K S, Singh R S, Culjat M O, Stojadinovic A, Grundfest W S, Taylor Z D. In vivo terahertz imaging of rat skin burns. Journal of Biomedical Optics, 2012, 17(4): 040503

    Article  Google Scholar 

  6. Arbab M H, Dickey T C, Winebrenner D P, Chen A, Klein M B, Mourad P D. Terahertz reflectometry of burn wounds in a rat model. Biomedical Optics Express, 2011, 2(8): 2339–2342

    Article  Google Scholar 

  7. Park G S, Kim Y H, Han H, Han J K, Ahn J, Son J H, Park W Y, Jeong Y U. Convergence of terahertz sciences in biomedical systems. Berlin: Springer, 2012, 351

    Book  Google Scholar 

  8. Wallace V P, Macpherson E, Zeitler J A, Reid C. Three-dimensional imaging of optically opaque materials using nonionizing terahertz radiation. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2008, 25(12): 3120–3133

    Article  Google Scholar 

  9. World Health Organization. http://www.who.int/bulletin/volumes/87/8/09-030809/zh/

  10. Dzwierzynski W W. Managing malignant melanoma. Plastic and Reconstructive Surgery, 2013, 132(3): 446e–460e

    Article  Google Scholar 

  11. Perera E, Gnaneswaran N, Jennens R, Sinclair R. Malignant Melanoma. Healthcare (Basel, Switzerland), 2013, 2(1): 1–19

    Google Scholar 

  12. Grant-Kels J M, Bason E T, Grin C M. The misdiagnosis of malignant melanoma. Journal of the American Academy of Dermatology, 1999, 40(4): 539–548

    Article  Google Scholar 

  13. Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology, 2002, 47(21): 3853–3863

    Article  Google Scholar 

  14. Wallace V P, Fitzgerald A J, Pickwell E, Pye R J, Taday P F, Flanagan N, Ha T. Terahertz pulsed spectroscopy of human Basal cell carcinoma. Applied Spectroscopy, 2006, 60(10): 1127–1133

    Article  Google Scholar 

  15. Sim Y C, Ahn K M, Park J Y, Park C S, Son J H. Temperature-dependent terahertz imaging of excised oral malignant melanoma. IEEE Journal of Biomedical and Health Informatics, 2013, 17(4): 779–784

    Article  Google Scholar 

  16. Fan S, Ung B S Y, Parrott EP J, Wallace V P, Pickwell-Macpherson E. In vivo terahertz reflection imaging of human scars during and after the healing process. Journal of Biophotonics, 2017, 10(9): 1143–1151

    Article  Google Scholar 

  17. Rath T. Malignant melanoma. European Surgery, 2006, 38(2): 145–148

    Article  Google Scholar 

  18. Shih F. Mathematical Morphology. London: Wiley-IEEE Press, 2010, 3: 63

    Google Scholar 

  19. Dufour A, Tankyevych O, Naegel B, Talbot H, Ronse C, Baruthio J, Dokládal P, Passat N. Filtering and segmentation of 3D angio-graphic data: advances based on mathematical morphology. Medical Image Analysis, 2013, 17(2): 147–164

    Article  Google Scholar 

  20. Merazi-Meksen T, Boudraa M, Boudraa B. Mathematical morphology for TOFD image analysis and automatic crack detection. Ultrasonics, 2014, 54(6): 1642–1648

    Article  MATH  Google Scholar 

  21. Li Y, Liang X, Zuo M J. A new strategy of using a time-varying structure element for mathematical morphological filtering. Measurement, 2017, 106: 53–65

    Article  Google Scholar 

  22. Sy S, Huang S, Wang Y X, Yu J, Ahuja A T, Zhang Y T, Pickwell-MacPherson E. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast. Physics in Medicine and Biology, 2010, 55(24): 7587–7596

    Article  Google Scholar 

  23. Huang S Y, Wang Y X J, Yeung D K W, Ahuja A T, Zhang Y T, Pickwell-Macpherson E. Tissue characterization using terahertz pulsed imaging in reflection geometry. Physics in Medicine and Biology, 2009, 54(1): 149–160

    Article  Google Scholar 

  24. Wortsman X, Wortsman J. Clinical usefulness of variable-frequency ultrasound in localized lesions of the skin. Journal of the American Academy of Dermatology, 2010, 62(2): 247–256

    Article  Google Scholar 

  25. Higgins H W 2nd, Lee K C, Galan A, Leffell D J. Melanoma in situ: Part I. Epidemiology, screening, and clinical features. Journal of the American Academy of Dermatology, 2015, 73(2): 181–190, quiz 191–192

    Article  Google Scholar 

  26. Kelleher F C, McArthur G A. Targeting NRAS in melanoma. Cancer Journal (Sudbury, Mass.), 2012, 18(2): 132–136

    Article  Google Scholar 

  27. Forman S B, Ferringer T C, Peckham S J, Dalton S R, Sasaki G T, Libow L F, Elston D M. Is superficial spreading melanoma still the most common form of malignant melanoma? Journal of the American Academy of Dermatology, 2008, 58(6): 1013–1020

    Article  Google Scholar 

  28. Oba J, Nakahara T, Hayashida S, Kido M, Xie L, Takahara M, Uchi H, Miyazaki S, Abe T, Hagihara A, Moroi Y, Furue M. Expression of CD10 predicts tumor progression and unfavorable prognosis in malignant melanoma. Journal of the American Academy of Dermatology, 2011, 65(6): 1152–1160

    Article  Google Scholar 

  29. Al Dhaybi R, Agoumi M, Gagné I, McCuaig C, Powell J, Kokta V. p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. Journal of the American Academy of Dermatology, 2011, 65(2): 357–363

    Article  Google Scholar 

  30. Quatresooz P, Piérard G E. Malignant melanoma: from cell kinetics to micrometastases. Journal of the American Academy of Dermatology, 2011, 12(2): 77–86

    Google Scholar 

  31. Wititsuwannakul J, Mason A R, Klump V R, Lazova R. Neuropilin-2 as a useful marker in the differentiation between Spitzoid malignant melanoma and Spitz nevus. Journal of the American Academy of Dermatology, 2013, 68(1): 129–137

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61371055).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Sun.

Additional information

Ping Sun got bachelor degree of physics at Jilin University. In 2000, he got master degree of optics engineering at Beijing Institute of Technology. In 2004, he got Ph.D. degree of optics engineering at Beijing Institute of Technology. His research area includes biological photonics, digital holography and spectroscopy. His present work focus on the terahertz spectroscopy and imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xie, Y. & Sun, P. Edge detection on terahertz pulse imaging of dehydrated cutaneous malignant melanoma embedded in paraffin. Front. Optoelectron. 12, 317–323 (2019). https://doi.org/10.1007/s12200-019-0861-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-019-0861-1

Keywords

Navigation