Skip to main content
Log in

Wedged field using the half-field method with a flattening filter-free photon beam

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

In this study, we propose a novel wedged field using a half-field flattening filter-free beam without a metallic filter or a moving jaw, and investigate the characteristics of the proposed technique. Dose distributions of the proposed method were first determined in virtual-water or anthropomorphic phantom using a radiotherapy planning system. We evaluated the wedge angle as a function of the field size, collimator rotation, and depth. The wedge angle at 10 MV was observed to be greater than that at 6 MV. The minimum angles at 6 and 10 MV were 17.7° and 40.4°, respectively, while the maximum angles were 33.9° and 48.4°, respectively. We determined that the wedge angle depended on the nominal beam energy and field size, and we verified that the proposed method is capable of delivering a gradient dose distribution and reducing treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O'Brien PF, Gillies BA, Schwartz M, Young C, Davey P. Radiosurgery with unflattened 6-MV photon beams. Med Phys. 1991;18:519–21. https://doi.org/10.1118/1.596656.

    Article  CAS  PubMed  Google Scholar 

  2. Georg D, Knoos T, McClean B. Current status and future perspective of flattening filter free photon beams. Med Phys. 2011;38:1280–93. https://doi.org/10.1118/1.3554643.

    Article  PubMed  Google Scholar 

  3. Bayouth JE, Kaiser HS, Smith MC, Pennington EC, Anderson KM, Ryken TC. Image-guided stereotactic radiosurgery using a specially designed high-dose-rate linac. Med Dosim. 2007;32:134–41. https://doi.org/10.1016/j.meddos.2007.01.010.

    Article  PubMed  Google Scholar 

  4. Lang S, Shrestha B, Graydon S, Cavelaars F, Linsenmeier C, Hrbacek J, Klöck S, Studer G, Riesterer O. Clinical application of flattening filter free beams for extracranial stereotactic radiotherapy. Radiother Oncol. 2013;106:255–9. https://doi.org/10.1016/j.radonc.2012.12.012.

    Article  PubMed  Google Scholar 

  5. Prendergast BM, Fiveash JB, Popple RA, Clark GM, Thomas EM, Minnich DJ, Jacob R, Spencer SA, Bonner JA, Dobelbower MC. Flattening filter-free linac improves treatment delivery efficiency in stereotactic body radiation therapy. J Appl Clin Med Phys. 2013;14:4126. https://doi.org/10.1120/jacmp.v14i3.4126.

    Article  PubMed  Google Scholar 

  6. Vassiliev ON, Kry SF, Chang JY, Balter PA, Titt U, Mohan R. Stereotactic radiotherapy for lung cancer using a flattening filter free Clinac. J Appl Clin Med Phys. 2009;10:14–211. https://doi.org/10.1120/jacmp.v10i1.2880.

    Article  PubMed Central  Google Scholar 

  7. Underberg RW, Lagerwaard FJ, Slotman BJ, Cuijpers JP, Senan S. Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: an analysis of 4DCT datasets. Int J Radiat Oncol Biol Phys. 2005;62(2):554–60. https://doi.org/10.1016/j.ijrobp.2005.01.032.

    Article  PubMed  Google Scholar 

  8. Cashmore J. The characterization of unflattened photon beams from a 6 MV linear accelerator. Phys Med Biol. 2008;53(7):1933–46. https://doi.org/10.1088/0031-9155/53/7/009.

    Article  PubMed  Google Scholar 

  9. Kragl G, afWetterstedt S, Knausl B, Lind M, McCavana P, Knöös T, et al. Dosimetric characteristics of 6 and 10 MV unflattened photon beams. Radiother Oncol. 2009;93(1):141–6. https://doi.org/10.1016/j.radonc.2009.06.008.

    Article  CAS  PubMed  Google Scholar 

  10. Dalaryd M, Kragl G, Ceberg C, Georg D, McClean B, afWetterstedt S, Wieslander E, Knöös T. A Monte Carlo study of a flattening filter-free linear accelerator verified with measurements. Phys Med Biol. 2010;55(23):7333–444. https://doi.org/10.1088/0031-9155/55/23/010.

    Article  PubMed  Google Scholar 

  11. Vassiliev ON, Titt U, Ponisch F, Kry SF, Mohan R, Gillin MT. Dosimetric properties of photon beams from a flattening filter free clinical accelerator. Phys Med Biol. 2006;51(7):1907–17. https://doi.org/10.1088/0031-9155/51/7/019.

    Article  PubMed  Google Scholar 

  12. Kragl G, Baier F, Lutz S, Albrich D, Dalaryd M, Kroupa B, Wiezorek T, Knöös T, Georg D. Flattening filter free beams in SBRT and IMRT dosimetric assessment of peripheral doses. ZeitschriftfürmedizinischePhysik. 2011;21(2):91–101. https://doi.org/10.1016/j.zemedi.2010.07.003.

    Article  Google Scholar 

  13. Kry SF, Titt U, Ponisch F, Vassiliev ON, Salehpour M, Gillin M, Mohan R. Reduced neutron production through use of a flattening-filter-free accelerator. Int J Radiat Oncol Biol Phys. 2007;68:1260–4. https://doi.org/10.1016/j.ijrobp.2007.04.002.

    Article  PubMed  Google Scholar 

  14. Alongi F, Cozzi L, Arcangeli S, Iftode C, Comito T, Villa E, Lobefalo F, Navarria P, Reggiori G, Mancosu P, Clerici E. Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study. Radiat Oncol. 2013;8:171. https://doi.org/10.1186/1748-717X-8-171.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stieler F, Fleckenstein J, Simeonova A, Wenz F, Lohr F. Intensity modulated radiosurgery of brain metastases with flattening filter-free beams. Radiother Oncol. 2013;109:448–51. https://doi.org/10.1016/j.radonc.2013.10.017.

    Article  PubMed  Google Scholar 

  16. Petti PL, Siddon RL. Effective wedge angles with a universal wedge. Phys Med Biol. 1985;30:985–91. https://doi.org/10.1088/0031-9155/30/9/010.

    Article  CAS  PubMed  Google Scholar 

  17. Georg D, Garibaldi C, Dutreix A. Measurements of basic parameters in wedged high-energy photon beams using a mini-phantom. Phys Med Biol. 1997;42:1821–31. https://doi.org/10.1088/0031-9155/42/9/012.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Mamgani A, van Rooij PH, Woutersen DP, Mehilal R, Tans L, Monserez D, Baatenburg de Jong RJ. Radiotherapy for T1-2N0 glottic cancer: a multivariate analysis of predictive factors for the long-term outcome in 1050 patients and a prospective assessment of quality of life and voice handicap index in a subset of 233 patients. Clin Otolaryngol. 2013;38:306–12. https://doi.org/10.1111/coa.12139.

    Article  CAS  PubMed  Google Scholar 

  19. Aaltonen LM, Rautiainen N, Sellman J, Saarilahti K, Mäkitie A, Rihkanen H, Laranne J, Kleemola L, Wigren T, Sala E, Lindholm P. Voice quality after treatment of early vocal cord cancer: a randomized trial comparing laser surgery with radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90:255–60. https://doi.org/10.1016/j.ijrobp.2014.06.032.

    Article  PubMed  Google Scholar 

  20. Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25(5):656–61. https://doi.org/10.1118/1.598248.

    Article  CAS  PubMed  Google Scholar 

  21. Shih R, Li XA, Chu JC. Dynamic wedge versus physical wedge: a Monte Carlo study. Med Phys. 2001;28:612–9. https://doi.org/10.1118/1.1359249.

    Article  CAS  PubMed  Google Scholar 

  22. Bortfeld T, Jiang SB, Rietzel E. Effects of motion on the total dose distribution. SeminRadiat Oncol. 2004;14:41–51. https://doi.org/10.1053/j.semradonc.2003.10.011.

    Article  Google Scholar 

  23. Pemler P, Besserer J, Lombriser N, Pescia R, Schneider U. Influence of respiration-induced organ motion on dose distributions in treatments using enhanced dynamic wedges. Med Phys. 2001;28:2234–40. https://doi.org/10.1118/1.1410121.

    Article  CAS  PubMed  Google Scholar 

  24. Gibbons JP, Antolak JA, Followill DS, Huq MS, Klein EE, Lam KL, Palta JR, Roback DM, Reid M, Khan FM. Monitor unit calculations for external photon and electron beams: Report of the AAPM Therapy Physics Committee Task Group No. 71. Med Phys. 2014;41:031501. https://doi.org/10.1118/1.4864244.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Tomida.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare. This article does not contain any studies with human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomida, T., Konno, M., Urikura, A. et al. Wedged field using the half-field method with a flattening filter-free photon beam. Radiol Phys Technol 13, 201–209 (2020). https://doi.org/10.1007/s12194-020-00561-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-020-00561-8

Keywords

Navigation