Skip to main content
Log in

Application of CT-PSF-based computer-simulated lung nodules for evaluating the accuracy of computer-aided volumetry

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

With the wide dissemination of computed tomography (CT) screening for lung cancer, measuring the nodule volume accurately with computer-aided volumetry software is increasingly important. Many studies for determining the accuracy of volumetry software have been performed using a phantom with artificial nodules. These phantom studies are limited, however, in their ability to reproduce the nodules both accurately and in the variety of sizes and densities required. Therefore, we propose a new approach of using computer-simulated nodules based on the point spread function measured in a CT system. The validity of the proposed method was confirmed by the excellent agreement obtained between computer-simulated nodules and phantom nodules regarding the volume measurements. A practical clinical evaluation of the accuracy of volumetry software was achieved by adding simulated nodules onto clinical lung images, including noise and artifacts. The tested volumetry software was revealed to be accurate within an error of 20 % for nodules >5 mm and with the difference between nodule density and background (lung) (CT value) being 400–600 HU. Such a detailed analysis can provide clinically useful information on the use of volumetry software in CT screening for lung cancer. We concluded that the proposed method is effective for evaluating the performance of computer-aided volumetry software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyle P, Levin B. International agency for research on cancer-WHO: world cancer report 2008. Lyon: WHO Press; 2008.

    Google Scholar 

  2. International Early Lung Cancer Action Program Investigators, Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, Miettinen OS. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med. 2006;355:1763–71.

    Article  PubMed  Google Scholar 

  3. National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  PubMed  Google Scholar 

  4. Welch HG, Black WC. Overdiagnosis in cancer. J Natl Cancer Inst. 2010;102:605–13.

    Article  PubMed  Google Scholar 

  5. Henschke CI, Shaham D, Yankelevitz DF, Kramer A, Kostis WJ, Reeves AP, Vazquez M, Koizumi J, Miettinen OS. CT screening for lung cancer significance of diagnoses in its baseline cycle. Clin Imaging. 2006;30:11–5.

    Article  PubMed  Google Scholar 

  6. Lindell RM, Hartman TE, Swensen SJ, Jett JR, Midthun DE, Tazelaar HD, Mandrekar JN. Five-year lung cancer screening experience: CT appearance, growth rate, location, and histologic features of 61 lung cancers. Radiology. 2007;242:555–62.

    Article  PubMed  Google Scholar 

  7. Oda S, Awai K, Murao K, Ozawa A, Utsunomiya D, Yanaga Y, Kawanaka K, Yamashita Y. Volume-doubling time of pulmonary nodules with ground glass opacity at multidetector CT: assessment with computer-aided three-dimensional volumetry. Acad Radiol. 2011;18:63–9.

    Article  PubMed  Google Scholar 

  8. Marten K, Engelke C. Computer-aided detection and automated CT volumetry of pulmonary nodules. Eur Radiol. 2007;17:888–901.

    Article  PubMed  Google Scholar 

  9. Marchianò A, Calabrò E, Civelli E, Di Tolla G, Frigerio LF, Morosi C, Tafaro F, Ferri E, Sverzellati N, Camerini T, Mariani L, Lo Vullo S, Pastorino U. Pulmonary nodules: volume repeatability at multidetector CT lung cancer screening. Radiology. 2009;251:919–25.

    Article  PubMed  Google Scholar 

  10. Knöss N, Hoffmann B, Fabel M, Wiese C, Jochens A, Bolte H, Heller M, Biederer J. Lung nodule assessment in computed tomography: precision of attenuation measurement based on computer-aided volumetry. Rofo. 2009;181:1151–6.

    Article  PubMed  Google Scholar 

  11. Ashraf H, de Hoop B, Shaker SB, Dirksen A, Bach KS, Hansen H, Prokop M, Pedersen JH. Lung nodule volumetry: segmentation algorithms within the same software package cannot be used interchangeably. Eur Radiol. 2010;20:1878–85.

    Article  PubMed  CAS  Google Scholar 

  12. Wormanns D, Kohl G, Klotz E, Marheine A, Beyer F, Heindel W, Diederich S. Volumetric measurements of pulmonary nodules at multi-row detector CT: in vivo reproducibility. Eur Radiol. 2004;14:86–92.

    Article  PubMed  Google Scholar 

  13. Oda S, Awai K, Murao K, Ozawa A, Yanaga Y, Kawanaka K, Yamashita Y. Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT. Am J Roentgenol. 2010;194:398–406.

    Article  Google Scholar 

  14. Nietert PJ, Ravenel JG, Leue WM, Miller JV, Taylor KK, Garrett-Mayer ES, Silvestri GA. Imprecision in automated volume measurements of pulmonary nodules and its effect on the level of uncertainty in volume doubling time estimation. Chest. 2009;135:1580–7.

    Article  PubMed  Google Scholar 

  15. Prionas ND, Ray S, Boone JM. Volume assessment accuracy in computed tomography: a phantom study. J Appl Clin Med Phys. 2010;11:3037.

    PubMed  Google Scholar 

  16. Linning E, Daqing M. Volumetric measurement pulmonary ground-glass opacity nodules with multi-detector CT: effect of various tube current on measurement accuracy: a chest CT phantom study. Acad Radiol. 2009;16:934–9.

    Article  PubMed  CAS  Google Scholar 

  17. Ravenel JG, Leue WM, Nietert PJ, Miller JV, Taylor KK, Silvestri GA. Pulmonary nodule volume: effects of reconstruction parameters on automated measurements: a phantom study. Radiology. 2008;247:400–8.

    PubMed  Google Scholar 

  18. Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology. 2009;251:26–37.

    Article  PubMed  Google Scholar 

  19. Zhao B, Gamsu G, Ginsberg MS, Jiang L, Schwartz LH. Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm. J Appl Clin Med Phys. 2003;4:248–60.

    Article  PubMed  Google Scholar 

  20. Shin HO, Blietz M, Frericks B, Baus S, Savellano D, Galanski M. Insertion of virtual pulmonary nodules in CT data of the chest: development of a software tool. Eur Radiol. 2006;16:2567–74.

    Article  PubMed  Google Scholar 

  21. Li X, Samei E, Delong DM, Jones RP, Gaca AM, Hollingsworth CL, Maxfield CM, Carrico CW, Frush DP. Three-dimensional simulation of lung nodules for paediatric multidetector array CT. Br J Radiol. 2009;82:401–11.

    Article  PubMed  CAS  Google Scholar 

  22. Kalender WA. Computed tomography. 2nd ed. Erlangen: Publicis; 2005.

  23. Prevrhal S, Fox JC, Shepherd JA, Genant HK. Accuracy of CT-based thickness measurement of thin structures: modeling of limited spatial resolution in all three dimensions. Med Phys. 2003;30:1–8.

    Article  PubMed  Google Scholar 

  24. Rollano-Hijarrubia E, Stokking R, van der Meer F, Niessen WJ. Imaging of small high-density structures in CT A phantom study. Acad Radiol. 2006;13:893–908.

    Article  PubMed  Google Scholar 

  25. Ohkubo M, Wada S, Kunii M, Matsumoto T, Nishizawa K. Imaging of small spherical structures in CT: simulation study using measured point spread function. Med Biol Eng Comput. 2008;46:273–82.

    Article  PubMed  Google Scholar 

  26. Ohkubo M, Wada S, Kayugawa A, Matsumoto T, Murao K. Image filtering as an alternative to the application of a different reconstruction kernel in CT imaging: feasibility study in lung cancer screening. Med Phys. 2011;38:3915–23.

    Article  PubMed  Google Scholar 

  27. Polacin A, Kalender WA, Brink J, Vannier MA. Measurement of slice sensitivity profiles in spiral CT. Med Phys. 1994;21:133–40.

    Article  PubMed  CAS  Google Scholar 

  28. Okubo M, Wada S, Saito M. Validation of the blurring of a small object on CT images calculated on the basis of three-dimensional spatial resolution. Igaku Butsuri. 2005;25:132–40.

    PubMed  Google Scholar 

  29. Ohkubo M, Wada S, Matsumoto T, Nishizawa K. An effective method to verify line and point spread functions measured in computed tomography. Med Phys. 2006;33:2757–64.

    Article  PubMed  Google Scholar 

  30. Ohkubo M, Wada S, Ida S, Kunii M, Kayugawa A, Matsumoto T, Nishizawa K, Murao K. Determination of point spread function in computed tomography accompanied with verification. Med Phys. 2009;36:2089–97.

    Article  PubMed  Google Scholar 

  31. Schwarzband G, Kiryati N. The point spread function of spiral CT. Phys Med Biol. 2005;50:5307–22.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Cancer Research (19–25) from the Ministry of Health, Labor and Welfare, Japan, and by a Grant-in-Aid for Scientific Research (C) (23602005). This research was also supported by a joint study undertaken between Niigata University and Fujitsu Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Wada.

About this article

Cite this article

Funaki, A., Ohkubo, M., Wada, S. et al. Application of CT-PSF-based computer-simulated lung nodules for evaluating the accuracy of computer-aided volumetry. Radiol Phys Technol 5, 166–171 (2012). https://doi.org/10.1007/s12194-012-0150-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-012-0150-9

Keywords

Navigation