Skip to main content

Advertisement

Log in

Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Nestin-expressing stromal cells (NESCs) and Schwann cells in the bone marrow (BM) play crucial roles as a niche for normal hematopoietic stem cells in mice. It has been reported that both types of cells are decreased in myeloproliferative neoplasms in patients and also in a mouse model, whereas an increase in NESCs was reported in acute myeloid leukemia. It is thus of interest whether and how these BM stromal cells are structured in myelodysplastic syndromes (MDS). Here, we focused on NESCs and glial fibrillary acidic protein (GFAP)-expressing cells in the BM of MDS patients. We found a marked increase of NESCs in MDS with fibrosis (MDS-F) at a high frequency (9/19; 47.4%), but not in MDS without fibrosis (0/26; 0%). Intriguingly, in eight of the nine (88.9%) MDS-F cases with elevated NESCs, a majority of NESCs also expressed GFAP, with an additional increase in GFAP single-positive cells. Furthermore, in seven of them, we found a prominent structure characterized by neurofilament heavy chain staining surrounded by NESCs with GFAP expression. This structure may represent peripheral nerve axons surrounded by Schwann cells, and could be relevant to the pathophysiology of MDS-F.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60:585–95.

    Article  PubMed  CAS  Google Scholar 

  3. McKay R. Stem cells in the central nervous system. Science. 1997;276:66–71.

    Article  PubMed  CAS  Google Scholar 

  4. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013;502:637–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, et al. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147:1146–58.

    Article  PubMed  CAS  Google Scholar 

  6. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H, Kunisaki Y, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem cell. 2014;15:365–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Arranz L, Sanchez-Aguilera A, Martin-Perez D, Isern J, Langa X, Tzankov A, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512:78–81.

    Article  PubMed  CAS  Google Scholar 

  8. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD. Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer. 2007;7:118–29.

    Article  PubMed  CAS  Google Scholar 

  9. Ogawa S. Splicing factor mutations in myelodysplasia. Int J Hematol. 2012;96:438–42.

    Article  PubMed  CAS  Google Scholar 

  10. Cazzola M, Malcovati L. Myelodysplastic syndromes–coping with ineffective hematopoiesis. N Engl J Med. 2005;352:536–8.

    Article  PubMed  CAS  Google Scholar 

  11. Xiong H, Yang XY, Han J, Wang Q, Zou ZL. Cytokine expression patterns and mesenchymal stem cell karyotypes from the bone marrow microenvironment of patients with myelodysplastic syndromes. Br J Med Biol Res. 2015;48:207–13.

    Article  CAS  Google Scholar 

  12. Abe-Suzuki S, Kurata M, Abe S, Onishi I, Kirimura S, Nashimoto M, et al. CXCL12+ stromal cells as bone marrow niche for CD34+ hematopoietic cells and their association with disease progression in myelodysplastic syndromes. Lab Invest. 2014;94:1212–23.

    Article  PubMed  CAS  Google Scholar 

  13. Balderman SR, Li AJ, Hoffman CM, Frisch BJ, Goodman AN, LaMere MW, et al. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 2016;127:616–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Flores-Figueroa E, Varma S, Montgomery K, Greenberg PL, Gratzinger D. Distinctive contact between CD34+ hematopoietic progenitors and CXCL12+ CD271+ mesenchymal stromal cells in benign and myelodysplastic bone marrow. Lab Invest. 2012;92:1330–41.

    Article  PubMed  CAS  Google Scholar 

  15. Buesche G, Teoman H, Wilczak W, Ganser A, Hecker H, Wilkens L, et al. Marrow fibrosis predicts early fatal marrow failure in patients with myelodysplastic syndromes. Leukemia. 2008;22:313–22.

    Article  PubMed  CAS  Google Scholar 

  16. Fu B, Ok CY, Goswami M, Xei W, Jaso JM, Muzzafar T, et al. The clinical importance of moderate/severe bone marrow fibrosis in patients with therapy-related myelodysplastic syndromes. Ann Hematol. 2013;92:1335–43.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marisavljevic D, Rolovic Z, Cemerikic V, Boskovic D, Colovic M. Myelofibrosis in primary myelodysplastic syndromes: clinical and biological significance. Med Oncol. 2004;21:325–31.

    Article  PubMed  CAS  Google Scholar 

  18. Della Porta MG, Malcovati L, Boveri E, Travaglino E, Pietra D, Pascutto C, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol. 2009;27:754–62.

    Article  PubMed  Google Scholar 

  19. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90:1128–32.

    PubMed  Google Scholar 

  20. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.

    Article  PubMed  CAS  Google Scholar 

  21. Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38:364–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, et al. Schwann cell precursors from human pluripotent stem cells as a potential therapeutic target for myelin repair. Stem Cell Rep. 2017;8:1714–26.

    Article  CAS  Google Scholar 

  23. Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233:183–98.

    Article  PubMed  CAS  Google Scholar 

  24. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7.

    Article  PubMed  CAS  Google Scholar 

  25. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schemenau J, Baldus S, Anlauf M, Reinecke P, Braunstein S, Blum S, et al. Cellularity, characteristics of hematopoietic parameters and prognosis in myelodysplastic syndromes. Eur J Haematol. 2015;95:181–9.

    Article  PubMed  Google Scholar 

  27. Ramos F, Robledo C, Izquierdo-Garcia FM, Suarez-Vilela D, Benito R, Fuertes M, et al. Bone marrow fibrosis in myelodysplastic syndromes: a prospective evaluation including mutational analysis. Oncotarget. 2016;7:30492–503.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gu H, Wang S, Messam CA, Yao Z. Distribution of nestin immunoreactivity in the normal adult human forebrain. Brain Res. 2002;943:174–80.

    Article  PubMed  CAS  Google Scholar 

  29. Minovi A, Witt M, Prescher A, Gudziol V, Dazert S, Hatt H, et al. Expression and distribution of the intermediate filament protein nestin and other stem cell related molecules in the human olfactory epithelium. Histol Histopathol. 2010;25:177–87.

    PubMed  CAS  Google Scholar 

  30. Li H, Cherukuri P, Li N, Cowling V, Spinella M, Cole M, et al. Nestin is expressed in the basal/myoepithelial layer of the mammary gland and is a selective marker of basal epithelial breast tumors. Cancer Res. 2007;67:501–10.

    Article  PubMed  CAS  Google Scholar 

  31. Perry J, Ho M, Viero S, Zheng K, Jacobs R, Thorner PS. The intermediate filament nestin is highly expressed in normal human podocytes and podocytes in glomerular disease. Pediatr Dev Pathol. 2007;10:369–82.

    Article  PubMed  CAS  Google Scholar 

  32. Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010;58:721–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28:2162–71.

    Article  PubMed  CAS  Google Scholar 

  34. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV, Tarasova Y, et al. Nestin expression–a property of multi-lineage progenitor cells? Cell Mol Life Sci. 2004;61:2510–22.

    Article  PubMed  CAS  Google Scholar 

  35. Vaittinen S, Lukka R, Sahlgren C, Hurme T, Rantanen J, Lendahl U, et al. The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol. 2001;60:588–97.

    Article  PubMed  CAS  Google Scholar 

  36. Calderone A. The biological role of Nestin((+))-cells in physiological and pathological cardiovascular remodeling. Front Cell Dev Biol. 2018;6:15.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beguin PC, Gosselin H, Mamarbachi M, Calderone A. Nestin expression is lost in ventricular fibroblasts during postnatal development of the rat heart and re-expressed in scar myofibroblasts. J Cell Physiol. 2012;227:813–20.

    Article  PubMed  CAS  Google Scholar 

  38. Hertig V, Tardif K, Meus MA, Duquette N, Villeneuve L, Toussaint F, et al. Nestin expression is upregulated in the fibrotic rat heart and is localized in collagen-expressing mesenchymal cells and interstitial CD31(+)- cells. PLoS One. 2017;12:e0176147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Dong Z, Sinanan A, Parkinson D, Parmantier E, Mirsky R, Jessen KR. Schwann cell development in embryonic mouse nerves. J Neurosci Res. 1999;56:334–48.

    Article  PubMed  CAS  Google Scholar 

  40. Isern J, Garcia-Garcia A, Martin AM, Arranz L, Martin-Perez D, Torroja C, et al. The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem cell niche function. eLife. 2014;3:e03696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Dybedal I, Guan F, Borge OJ, Veiby OP, Ramsfjell V, Nagata S, et al. Transforming growth factor-beta1 abrogates Fas-induced growth suppression and apoptosis of murine bone marrow progenitor cells. Blood. 1997;90:3395–403.

    PubMed  CAS  Google Scholar 

  42. Batard P, Monier MN, Fortunel N, Ducos K, Sansilvestri-Morel P, Phan T, et al. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J Cell Sci. 2000;113:383–90.

    PubMed  CAS  Google Scholar 

  43. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-beta signaling in fibrosis. Growth Factors. 2011;29:196–202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Tran B. Nguyen and Dr. Xinh Thi Phan for their excellent discussion. We also thank Dr. Bryan J. Mathis and Ms. F. Miyamasu, Medical English Communications Center, University of Tsukuba, for their editorial assistance. We thank Prof. Masayuki Masu, Department of Molecular Neurobiology, University of Tsukuba, for providing anti-Tuj1 antibody. This work was supported by Grants-in-Aid for Scientific Research (Kakenhi Nos. 15K15359 (S.C.) and 17K09898 (N.O)) from the Ministry of Education, Culture, Sports, and Science of Japan; the Project for Cancer Research and Therapeutic Evolution (P-CREATE) from the Japan Agency for Medical Research and Development (AMED) (S.C.); and Gilead Sciences International Research Scholars Program in Hematology/Oncology (H.N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Chiba.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Patients’ samples are used in this work. All the patients provided written informed consent before inclusion in the study, and the study protocol was approved by the ethics committee of the University of Tsukuba Hospital, which adheres to the guidelines of the Declaration of Helsinki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2610 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao-Sy, L., Obara, N., Sakamoto, T. et al. Prominence of nestin-expressing Schwann cells in bone marrow of patients with myelodysplastic syndromes with severe fibrosis. Int J Hematol 109, 309–318 (2019). https://doi.org/10.1007/s12185-018-02576-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-018-02576-9

Keywords

Navigation