Skip to main content

Advertisement

Log in

Protein C anticoagulant and cytoprotective pathways

  • Progress in Hematology
  • Current understanding of thrombosis and hemostasis—from bench to bedside
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Plasma protein C is a serine protease zymogen that is transformed into the active, trypsin-like protease, activated protein C (APC), which can exert multiple activities. For its anticoagulant action, APC causes inactivation of the procoagulant cofactors, factors Va and VIIIa, by limited proteolysis, and APC’s anticoagulant activity is promoted by protein S, various lipids, high-density lipoprotein, and factor V. Hereditary heterozygous deficiency of protein C or protein S is linked to moderately increased risk for venous thrombosis, while a severe or total deficiency of either protein is linked to neonatal purpura fulminans. In recent years, the beneficial direct effects of APC on cells which are mediated by several specific receptors have become the focus of much attention. APC-induced signaling can promote multiple cytoprotective actions which can minimize injuries in various preclinical animal injury models. Remarkably, pharmacologic therapy using APC demonstrates substantial neuroprotective effects in various murine injury models, including ischemic stroke. This review summarizes the molecules that are central to the protein C pathways, the relationship of pathway deficiencies to venous thrombosis risk, and mechanisms for the beneficial effects of APC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Esmon CT. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost. 2006;32:49–60.

    Article  PubMed  CAS  Google Scholar 

  2. Rezaie AR. Regulation of the protein C anticoagulant and antiinflammatory pathways. Curr Med Chem. 2010;17:2059–69.

    Article  PubMed  CAS  Google Scholar 

  3. Riewald M, Ruf W. Science review: role of coagulation protease cascades in sepsis. Crit Care. 2003;7:123–9.

    Article  PubMed  Google Scholar 

  4. Weiler H, Kerschen E. Modulation of sepsis outcome with variants of activated protein C. J Thromb Haemost. 2009;7:127–31.

    Article  PubMed  CAS  Google Scholar 

  5. Jackson CJ, Xue M. Activated protein C—an anticoagulant that does more than stop clots. Int J Biochem Cell Biol. 2008;40:2692–7.

    Article  PubMed  CAS  Google Scholar 

  6. Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood. 2007;109:3161–72.

    Article  PubMed  CAS  Google Scholar 

  7. van de Wouwer M, Collen D, Conway EM. Thrombomodulin-protein C-EPCR system: integrated to regulate coagulation and inflammation. Arterioscler Thromb Vasc Biol. 2004;24:1374–83.

    Article  PubMed  CAS  Google Scholar 

  8. Rezende SM, Simmonds RE, Lane DA. Coagulation, inflammation, and apoptosis: different roles for protein S and the protein S-C4b binding protein complex. Blood. 2004;103:1192–201.

    Article  PubMed  CAS  Google Scholar 

  9. Danese S, Vetrano S, Zhang L, Poplis VA, Castellino FJ. The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implications. Blood. 2010;115:1121–30.

    Article  PubMed  CAS  Google Scholar 

  10. Castoldi E, Rosing J. APC resistance: biological basis and acquired influences. J Thromb Haemost. 2010;8:445–53.

    Article  PubMed  CAS  Google Scholar 

  11. Dahlbäck B. Advances in understanding pathogenic mechanisms of thrombophilic disorders. Blood. 2008;112:19–27.

    Article  PubMed  CAS  Google Scholar 

  12. Zlokovic BV, Griffin JH. Cytoprotective protein C pathways and implications for stroke and neurological disorders. Trends Neurosci. 2011;34:198–209.

    Article  PubMed  CAS  Google Scholar 

  13. Hackeng TM, Rosing J. Protein S as cofactor for TFPI. Arterioscler Thromb Vasc Biol. 2009;29:2015–20.

    Article  PubMed  CAS  Google Scholar 

  14. Jackson C, Whitmont K, Tritton S, March L, Sambrook P, Xue M. New therapeutic applications for the anticoagulant, activated protein C. Expert Opin Biol Ther. 2008;8:1109–22.

    Article  PubMed  CAS  Google Scholar 

  15. van Sluis GL, Buller HR, Spek CA. The role of activated protein C in cancer progression. Thromb Res. 2010;125:S138–42.

    Article  PubMed  Google Scholar 

  16. Gupta A, Williams MD, Macias WL, Molitoris BA, Grinnell BW. Activated protein C and acute kidney injury: selective targeting of PAR-1. Curr Drug Targets. 2009;10:1212–26.

    Article  PubMed  CAS  Google Scholar 

  17. Griffin JH, Evatt B, Zimmerman TS, Kleiss AJ, Wideman C. Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 1981;68:1370–3.

    Article  PubMed  CAS  Google Scholar 

  18. Foster DC, Yoshitake S, Davie EW. The nucleotide sequence of the gene for human protein C. Proc Natl Acad Sci USA. 1985;82:4673–7.

    Article  PubMed  CAS  Google Scholar 

  19. Patracchini P, Aiello V, Palazzi P, Calzolari E, Bernardi F. Sublocalization of the human protein C gene on chromosome 2q13-q14. Hum Genet. 1989;81:191–2.

    Article  PubMed  CAS  Google Scholar 

  20. Griffin JH, Gruber A, Fernández JA. Reevaluation of total, free, and bound protein S and C4b-binding protein levels in plasma anticoagulated with citrate or hirudin. Blood. 1992;79:3203–11.

    PubMed  CAS  Google Scholar 

  21. Linse S, Hardig Y, Schultz DA, Dahlbäck B. A region of vitamin K-dependent protein S that binds to C4b binding protein (C4BP) identified using bacteriophage peptide display libraries. J Biol Chem. 1997;272:14658–65.

    Article  PubMed  CAS  Google Scholar 

  22. Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol. 2012;34:107–25.

    Article  PubMed  CAS  Google Scholar 

  23. Ito T, Maruyama I. Thrombomodulin: protectorate God of the vasculature in thrombosis and inflammation. J Thromb Haemost. 2011;9(Suppl 1):168–73.

    Article  PubMed  CAS  Google Scholar 

  24. Esmon CT, Owen WG. The discovery of thrombomodulin. J Thromb Haemost. 2004;2:209–13.

    Article  PubMed  CAS  Google Scholar 

  25. Jackman RW, Beeler DL, Fritze L, Soff G, Rosenberg RD. Human thrombomodulin gene is intron depleted: nucleic acid sequences of the cDNA and gene predict protein structure and suggest sites of regulatory control. Proc Natl Acad Sci USA. 1987;84:6425–9.

    Article  PubMed  CAS  Google Scholar 

  26. Wen DZ. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry. 1987;26:4350–7.

    Article  PubMed  CAS  Google Scholar 

  27. Fukudome K, Esmon CT. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem. 1994;269:26486–91.

    PubMed  CAS  Google Scholar 

  28. Simmonds RE, Lane DA. Structural and functional implications of the intron/exon organization of the human endothelial cell protein C/activated protein C receptor (EPCR) gene: comparison with the structure of CD1/major histocompatibility complex alpha1 and alpha2 domains. Blood. 1999;94:632–41.

    PubMed  CAS  Google Scholar 

  29. Bae JS, Yang L, Manithody C, Rezaie AR. The ligand occupancy of endothelial protein C receptor switches the protease-activated receptor 1-dependent signaling specificity of thrombin from a permeability-enhancing to a barrier-protective response in endothelial cells. Blood. 2007;110:3909–16.

    Article  PubMed  CAS  Google Scholar 

  30. Russo A, Soh UJ, Paing MM, Arora P, Trejo J. Caveolae are required for protease-selective signaling by protease-activated receptor-1. Proc Natl Acad Sci USA. 2009;106:6393–7.

    Article  PubMed  CAS  Google Scholar 

  31. Sturn DH, Kaneider NC, Feistritzer C, Djanani A, Fukudome K, Wiedermann CJ. Expression and function of the endothelial protein C receptor in human neutrophils. Blood. 2003;102:1499–505.

    Article  PubMed  CAS  Google Scholar 

  32. Yuksel M, Okajima K, Uchiba M, Horiuchi S, Okabe H. Activated protein C inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production by inhibiting activation of both nuclear factor-kappa B and activator protein-1 in human monocytes. Thromb Haemost. 2002;88:267–73.

    PubMed  CAS  Google Scholar 

  33. Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol. 2008;28:504–10.

    Article  PubMed  CAS  Google Scholar 

  34. Kerschen EJ, Hernandez I, Zogg M, Jia S, Hessner MJ, Fernandez J, et al. Activated protein C targets CD8+ dendritic cells to reduce the mortality of endotoxemia in mice. J Clin Invest. 2010;120:3167–78.

    Article  PubMed  CAS  Google Scholar 

  35. Qu D, Wang Y, Esmon NL, Esmon CT. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. J Thromb Haemost. 2007;5:395–402.

    Article  PubMed  CAS  Google Scholar 

  36. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057–68.

    Article  PubMed  CAS  Google Scholar 

  37. Coughlin SR. Thrombin signaling and protease-activated receptors. Nature. 2000;407:258–64.

    Article  PubMed  CAS  Google Scholar 

  38. Leger AJ, Covic L, Kuliopulos A. Protease-activated receptors in cardiovascular diseases. Circulation. 2006;114:1070–7.

    Article  PubMed  CAS  Google Scholar 

  39. Traynelis SF, Trejo J. Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr Opin Hematol. 2007;14:230–5.

    Article  PubMed  CAS  Google Scholar 

  40. Coughlin SR, Camerer E. PARticipation in inflammation. J Clin Invest. 2003;111:25–7.

    PubMed  CAS  Google Scholar 

  41. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature. 2000;404:609–13.

    Article  PubMed  CAS  Google Scholar 

  42. Gale AJ, Heeb MJ, Griffin JH. The autolysis loop of activated protein C interacts with factor Va and differentiates between the Arg506 and Arg306 cleavage sites. Blood. 2000;96:585–93.

    PubMed  CAS  Google Scholar 

  43. Shen L, Villoutreix BO, Dahlbäck B. Interspecies loop grafting in the protease domain of human protein C yielding enhanced catalytic and anticoagulant activity. Thromb Haemost. 1999;82:1078–87.

    PubMed  CAS  Google Scholar 

  44. Friedrich U, Nicolaes GAF, Villoutreix BO, Dahlbäck B. Secondary substrate-binding exosite in the serine protease domain of activated protein C important for cleavage at Arg-506 but not at Arg-306 in factor Va. J Biol Chem. 2001;276:23105–8.

    Article  PubMed  CAS  Google Scholar 

  45. Rezaie AR. Exosite-dependent regulation of the protein C anticoagulant pathway. Trends Cardiovasc Med. 2003;13:8–15.

    Article  PubMed  CAS  Google Scholar 

  46. Gale AJ, Tsavaler A, Griffin JH. Molecular characterization of an extended binding site for coagulation factor Va in the positive exosite of activated protein C. J Biol Chem. 2002;277:28836–40.

    Article  PubMed  CAS  Google Scholar 

  47. Gale AJ, Griffin JH. Characterization of a thrombomodulin binding site on protein C and its comparison to an activated protein C binding site for factor Va. Proteins. 2004;54:433–41.

    Article  PubMed  CAS  Google Scholar 

  48. Gale AJ, Radtke KP, Cunningham MA, Chamberlain D, Pellequer JL, Griffin JH. Intrinsic stability and functional properties of disulfide bond-stabilized coagulation factor VIIIa variants. J Thromb Haemost. 2006;4:1315–22.

    Article  PubMed  CAS  Google Scholar 

  49. Gale AJ, Cramer TJ, Rozenshteyn D, Cruz JR. Detailed mechanisms of the inactivation of factor VIIIa by activated protein C in the presence of its cofactors, protein S and factor V. J Biol Chem. 2008;283:16355–62.

    Article  PubMed  CAS  Google Scholar 

  50. Heeb MJ, Kojima Y, Rosing J, Tans G, Griffin JH. C-terminal residues 621–635 of protein S are essential for binding to factor Va. J Biol Chem. 1999;274:36187–92.

    Article  PubMed  CAS  Google Scholar 

  51. Heeb MJ, Kojima Y, Hackeng TM, Griffin JH. Binding sites for blood coagulation factor Xa and protein S involving residues 493–506 in factor Va. Protein Sci. 1996;5:1883–9.

    Article  PubMed  CAS  Google Scholar 

  52. Harmon S, Preston RJ, Ainle FN, Johnson JA, Cunningham MS, Smith OP, et al. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement. J Biol Chem. 2008;283:30531–9.

    Article  PubMed  CAS  Google Scholar 

  53. Mosnier LO, Zampolli A, Kerschen EJ, Schuepbach RA, Banerjee Y, Fernandez JA, et al. Hyper-antithrombotic, non-cytoprotective Glu149Ala-activated protein C mutant. Blood. 2009;113:5970–8.

    Article  PubMed  CAS  Google Scholar 

  54. Andersson HM, Arantes MJ, Crawley JT, Luken BM, Tran S, Dahlbäck B, et al. Activated protein C cofactor function of protein S: a critical role for Asp95 in the EGF1-like domain. Blood. 2010;115:4878–85.

    Article  PubMed  CAS  Google Scholar 

  55. Nishioka J, Suzuki K. Inhibition of cofactor activity of protein S by a complex of protein S and C4b-binding protein. Evidence for inactive ternary complex formation between protein S, C4b-binding protein, and activated protein C. J Biol Chem. 1990;265:9072–6.

    PubMed  CAS  Google Scholar 

  56. Fernández JA, Heeb MJ, Griffin JH. Identification of residues 413–433 of plasma protein S as essential for binding to C4b-binding protein. J Biol Chem. 1993;268:16788–94.

    PubMed  Google Scholar 

  57. Greengard JS, Fernández JA, Radtke KP, Griffin JH. Identification of candidate residues for interaction of protein S with C4b binding protein and activated protein C. Biochem J. 1995;305:397–403.

    PubMed  CAS  Google Scholar 

  58. Fernández JA, Griffin JH, Chang GT, Stam J, Reitsma PH, Bertina RM, et al. Involvement of amino acid residues 423–429 of human protein S in binding to C4b-binding protein. Blood Cells Mol Dis. 1998;24:101–12.

    Article  PubMed  Google Scholar 

  59. Brinkman HJ, Mertens K, van Mourik JA. Proteolytic cleavage of protein S during the hemostatic response. J Thromb Haemost. 2005;3:2712–20.

    Article  PubMed  CAS  Google Scholar 

  60. Chang GT, Aaldering L, Hackeng TM, Reitsma PH, Bertina RM, Bouma BN. Construction and characterization of thrombin-resistant variants of recombinant human protein S. Thromb Haemost. 1994;72:693–7.

    PubMed  CAS  Google Scholar 

  61. Heeb MJ, Mesters RM, Tans G, Rosing J, Griffin JH. Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C. J Biol Chem. 1993;268:2872–7.

    PubMed  CAS  Google Scholar 

  62. Hackeng TM, Sere KM, Tans G, Rosing J. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci USA. 2006;103:3106–11.

    Article  PubMed  CAS  Google Scholar 

  63. Hackeng TM, Maurissen LF, Castoldi E, Rosing J. Regulation of TFPI function by protein S. J Thromb Haemost. 2009;7:165–8.

    Article  PubMed  CAS  Google Scholar 

  64. Fernandes N, Mosnier LO, Tonnu L, Heeb MJ. Zn2 + -containing protein S inhibits extrinsic factor X activating complex independently of tissue factor pathway inhibitor (TFPI). J Thromb Haemost. 2010;8:1976–85.

    Article  PubMed  CAS  Google Scholar 

  65. Heeb MJ, Prashun D, Griffin JH, Bouma BN. Plasma protein S contains zinc essential for efficient activated protein C-independent anticoagulant activity and binding to factor Xa, but not for efficient binding to tissue factor pathway inhibitor. FASEB J. 2009;23:2244–53.

    Article  PubMed  CAS  Google Scholar 

  66. Fernández JA, Kojima K, Petäjä J, Hackeng TM, Griffin JH. Cardiolipin enhances protein C pathway anticoagulant activity. Blood Cells Mol Dis. 2000;26:115–23.

    Article  PubMed  CAS  Google Scholar 

  67. Bakker HM, Tans G, Janssen-Claessen T, Thomassen MC, Hemker HC, Griffin JH, et al. The effect of phospholipids, calcium ions and protein S on rate constants of human factor Va inactivation by activated human protein C. Eur J Biochem. 1992;208:171–8.

    Article  PubMed  CAS  Google Scholar 

  68. Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernández JA. High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest. 1999;103:219–27.

    Article  PubMed  CAS  Google Scholar 

  69. Griffin JH, Fernández JA, Deguchi H. Plasma lipoproteins, hemostasis and thrombosis. Thromb Haemost. 2001;86:386–94.

    PubMed  CAS  Google Scholar 

  70. Deguchi H, Fernández JA, Pabinger I, Heit JA, Griffin JH. Plasma glucosylceramide deficiency as potential risk factor for venous thrombosis and modulator of anticoagulant protein C pathway. Blood. 2001;97:1907–14.

    Article  PubMed  CAS  Google Scholar 

  71. Deguchi H, Fernández JA, Griffin JH. Neutral glycosphingolipid-dependent inactivation of coagulation factor Va by activated protein C and protein S. J Biol Chem. 2002;277:8861–5.

    Article  PubMed  CAS  Google Scholar 

  72. Yegneswaran S, Deguchi H, Griffin JH. Glucosylceramide, a neutral glycosphingolipid anticoagulant cofactor, enhances the interaction of human- and bovine-activated protein C with negatively charged phospholipid vesicles. J Biol Chem. 2003;278:14614–21.

    Article  PubMed  CAS  Google Scholar 

  73. Deguchi H, Yegneswaran S, Griffin JH. Sphingolipids as bioactive regulators of thrombin generation. J Biol Chem. 2004;279:12036–42.

    Article  PubMed  CAS  Google Scholar 

  74. Oslakovic C, Norstrom E, Dahlbäck B. Reevaluation of the role of HDL in the anticoagulant activated protein C system in humans. J Clin Invest. 2010;120:1396–9.

    Article  PubMed  CAS  Google Scholar 

  75. Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circ Res. 2006;98:1352–64.

    Article  PubMed  CAS  Google Scholar 

  76. Deguchi H, Pecheniuk NM, Elias DJ, Averell PM, Griffin JH. High-density lipoprotein deficiency and dyslipoproteinemia associated with venous thrombosis in men. Circulation. 2005;112:893–9.

    Article  PubMed  CAS  Google Scholar 

  77. Eichinger S, Pecheniuk NM, Hron G, Deguchi H, Schemper M, Kyrle PA, et al. High-density lipoprotein and the risk of recurrent venous thromboembolism. Circulation. 2007;115:1609–14.

    Article  PubMed  CAS  Google Scholar 

  78. Shen L, Dahlbäck B. Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor VIIIa. J Biol Chem. 1994;269:18735–8.

    PubMed  CAS  Google Scholar 

  79. Cramer TJ, Griffin JH, Gale AJ. Factor V is an anticoagulant cofactor for activated protein C during inactivation of factor Va. Pathophysiol Haemost Thromb. 2010;37:17–23.

    Article  PubMed  CAS  Google Scholar 

  80. Castoldi E, Rosing J. Factor V Leiden: a disorder of factor V anticoagulant function. Curr Opin Hematol. 2004;11:176–81.

    Article  PubMed  CAS  Google Scholar 

  81. Nicolaes GAF, Dahlbäck B. Factor V and thrombotic disease: description of a janus-faced protein. Arterioscler Thromb Vasc Biol. 2002;22:530–8.

    Article  PubMed  CAS  Google Scholar 

  82. Chalmers E, Cooper P, Forman K, Grimley C, Khair K, Minford A, et al. Purpura fulminans: recognition, diagnosis and management. Arch Dis Child. 2011;96:1066–71.

    Article  PubMed  CAS  Google Scholar 

  83. Gladson CL, Groncy P, Griffin JH. Coumarin necrosis, neonatal purpura fulminans, and protein C deficiency. Arch Dermatol. 1987;123:1701a–6a.

    Article  PubMed  CAS  Google Scholar 

  84. D’Ursi P, Marino F, Caprera A, Milanesi L, Faioni EM, Rovida E. ProCMD: a database and 3D web resource for protein C mutants. BMC Bioinformatics. 2007;8:S11.

    Article  PubMed  CAS  Google Scholar 

  85. Saunders RE, Perkins SJ. CoagMDB: a database analysis of missense mutations within four conserved domains in five vitamin K-dependent coagulation serine proteases using a text-mining tool. Hum Mutat. 2008;29:333–44.

    Article  PubMed  CAS  Google Scholar 

  86. Rovida E, Merati G, D’Ursi P, Zanardelli S, Marino F, Fontana G, et al. Identification and computationally-based structural interpretation of naturally occurring variants of human protein C. Hum Mutat. 2006;28:345–55.

    Article  CAS  Google Scholar 

  87. Greengard JS, Fisher CL, Villoutreix B, Griffin JH. Structural basis for type I and type II deficiencies of antithrombotic plasma protein C: patterns revealed by three-dimensional molecular modelling of mutations of the protease domain. Proteins. 1994;18:367–80.

    Article  PubMed  CAS  Google Scholar 

  88. Comp PC, Esmon CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med. 1984;311:1525–8.

    Article  PubMed  CAS  Google Scholar 

  89. Schwarz HP, Fischer M, Hopmeier P, Batard MA, Griffin JH. Plasma protein S deficiency in familial thrombotic disease. Blood. 1984;64:1297–300.

    PubMed  CAS  Google Scholar 

  90. Garcia de Frutos P, Fuentes-Prior P, Hurtado B, Sala N. Molecular basis of protein S deficiency. Thromb Haemost. 2007;98:543–56.

    PubMed  CAS  Google Scholar 

  91. Mahasandana C, Suvatte V, Marlar RA, Manco-Johnson MJ, Jacobson LJ, Hathaway WE. Neonatal purpura fulminans associated with homozygous protein S deficiency. Lancet. 1990;335:61–2.

    Article  PubMed  CAS  Google Scholar 

  92. Gandrille S, Borgel D, Ireland H, Lane DA, Simmonds R, Reitsma PH, et al. Protein S deficiency: a database of mutations. For the Plasma Coagulation Inhibitors Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1997;77:1201–14.

    PubMed  CAS  Google Scholar 

  93. Hayashi T, Nishioka J, Shigekiyo T, Saito S, Suzuki K. Protein S Tokushima: abnormal molecule with a substitution of Glu for Lys-155 in the second epidermal growth factor-like domain of protein S. Blood. 1994;83:683–90.

    PubMed  CAS  Google Scholar 

  94. Hayashi T, Nishioka J, Suzuki K. Characterization of dysfunctional protein S-Tokushima (K155 → E) in relation to the molecular interactions required for the regulation of blood coagulation. Pol J Pharmacol. 1996;48:221–3.

    PubMed  CAS  Google Scholar 

  95. Ikejiri M, Wada H, Sakamoto Y, Ito N, Nishioka J, Nakatani K, et al. The association of protein S Tokushima-K196E with a risk of deep vein thrombosis. Int J Hematol. 2010;92:302–5.

    Article  PubMed  CAS  Google Scholar 

  96. Nicolaes GA, Hackeng TM, Segers K, Rosing J. A structural model of the SHBG domain of human variant protein S Heerlen. Thromb Haemost. 2006;96:538–40.

    PubMed  CAS  Google Scholar 

  97. Heeb MJ, Koenen RR, Fernandez JA, Hackeng TM. Direct anticoagulant activity of protein S-C4b binding protein complex in Heerlen heterozygotes and normals. J Thromb Haemost. 2004;2:1766–73.

    Article  PubMed  CAS  Google Scholar 

  98. Miyata T, Kimura R, Kokubo Y, Sakata T. Genetic risk factors for deep vein thrombosis among Japanese: importance of protein S K196E mutation. Int J Hematol. 2006;83:217–23.

    Article  PubMed  CAS  Google Scholar 

  99. Kimura R, Kokubo Y, Miyashita K, Otsubo R, Nagatsuka K, Otsuki T, et al. Polymorphisms in vitamin K-dependent gamma-carboxylation-related genes influence interindividual variability in plasma protein C and protein S activities in the general population. Int J Hematol. 2006;84:387–97.

    Article  PubMed  CAS  Google Scholar 

  100. Hayashi T, Nishioka J, Suzuki K. Molecular mechanism of the dysfunction of protein S(Tokushima) (Lys155 → Glu) for the regulation of the blood coagulation system. Biochim Biophys Acta. 1995;1272:159–67.

    PubMed  Google Scholar 

  101. Dahlbäck B, Carlsson M, Svensson PJ. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proc Natl Acad Sci USA. 1993;90:1004–8.

    Article  PubMed  Google Scholar 

  102. Greengard JS, Sun X, Xu X, Fernández JA, Griffin JH, Evatt B. Activated protein C resistance caused by Arg506Gln mutation in factor Va. Lancet. 1994;343:1361–2.

    Article  PubMed  CAS  Google Scholar 

  103. Bertina RM, Koeleman BPC, Koster T, Rosendaal FR, Dirven RJ, de Ronde H, et al. Mutations in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994;369:64–7.

    Article  PubMed  CAS  Google Scholar 

  104. Delvaeye M, Noris M, de Vriese A, Esmon CT, Esmon NL, Ferrell G, et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med. 2009;361:345–57.

    Article  PubMed  CAS  Google Scholar 

  105. Poort SR, Vos HL, Rosendaal FR, Bertina RM. The endothelial protein C receptor (EPCR) 23 bp insert mutation and the risk of venous thrombosis. Thromb Haemost. 2002;88:160–2.

    PubMed  CAS  Google Scholar 

  106. Saposnik B, Lesteven E, Lokajczyk A, Esmon CT, Aiach M, Gandrille S. Alternative mRNA splicing is favored by the A3 haplotype of the EPCR gene PROCR and generates a novel soluble form of EPCR in plasma. Blood. 2008;111:3442–51.

    Article  PubMed  CAS  Google Scholar 

  107. Biguzzi E, Merati G, Liaw PCY, Bucciarelli P, Oganesyan N, Qu D, et al. A 23 bp insertion in the endothelial protein C receptor (EPCR) gene impairs EPCR function. Thromb Haemost. 2001;86:945–8.

    PubMed  CAS  Google Scholar 

  108. von Depka M, Czwalinna A, Eisert R, Wermes C, Scharrer I, Ganser A, et al. Prevalence of a 23 bp insertion in exon 3 of the endothelial cell protein C receptor gene in venous thrombophilia. Thromb Haemost. 2001;86:1360–2.

    Google Scholar 

  109. Medina P, Navarro S, Estelles A, Espana F. Polymorphisms in the endothelial protein C receptor gene and thrombophilia. Thromb Haemost. 2007;98:564–9.

    PubMed  CAS  Google Scholar 

  110. Medina P, Navarro S, Estelles A, Vaya A, Bertina RM, Espana F. Influence of the 4600A/G and 4678G/C polymorphisms in the endothelial protein C receptor (EPCR) gene on the risk of venous thromboembolism in carriers of factor V Leiden. Thromb Haemost. 2005;94:389–94.

    PubMed  CAS  Google Scholar 

  111. Joyce DE, Gelbert L, Ciaccia A, DeHoff B, Grinnell BW. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem. 2001;276:11199–203.

    Article  PubMed  CAS  Google Scholar 

  112. Riewald M, Petrovan RJ, Donner A, Mueller BM, Ruf W. Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science. 2002;296:1880–2.

    Article  PubMed  CAS  Google Scholar 

  113. Cheng T, Liu D, Griffin JH, Fernández JA, Castellino FJ, Rosen ED, et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med. 2003;9:338–42.

    Article  PubMed  CAS  Google Scholar 

  114. Mosnier LO, Griffin JH. Inhibition of staurosporine-induced apoptosis of endothelial cells by activated protein C requires protease activated receptor-1 and endothelial cell protein C receptor. Biochem J. 2003;373:65–70.

    Article  PubMed  CAS  Google Scholar 

  115. Feistritzer C, Riewald M. Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood. 2005;105:3178–84.

    Article  PubMed  CAS  Google Scholar 

  116. Finigan JH, Dudek SM, Singleton PA, Chiang ET, Jacobson JR, Camp SM, et al. Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem. 2005;280:17286–93.

    Article  PubMed  CAS  Google Scholar 

  117. Kenakin T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov. 2005;4:919–27.

    Article  PubMed  CAS  Google Scholar 

  118. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Annu Rev Pharmacol Toxicol. 2012;52:179–97.

    Article  PubMed  CAS  Google Scholar 

  119. Deupi X, Standfuss J. Structural insights into agonist-induced activation of G-protein-coupled receptors. Curr Opin Struct Biol. 2011;21:541–51.

    Article  PubMed  CAS  Google Scholar 

  120. Jalbert LR, Rosen ED, Moons L, Chan JCY, Carmeliet P, Collen D, et al. Inactivation of the gene for anticoagulant protein C causes lethal perinatal consumptive coagulopathy in mice. J Clin Invest. 1998;102:1481–8.

    Article  PubMed  CAS  Google Scholar 

  121. Pendurthi UR, Rao LV. Factor VIIa interaction with endothelial cells and endothelial cell protein C receptor. Thromb Res. 2010;125:S19–22.

    Article  PubMed  CAS  Google Scholar 

  122. Sen P, Gopalakrishnan R, Kothari H, Keshava S, Clark CA, Esmon CT, et al. Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood. 2011;117:3199–208.

    Article  PubMed  CAS  Google Scholar 

  123. Disse J, Petersen HH, Larsen KS, Persson E, Esmon N, Esmon CT, et al. The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J Biol Chem. 2011;286:5756–67.

    Article  PubMed  CAS  Google Scholar 

  124. Schuepbach RA, Riewald M. Coagulation factor Xa cleaves PAR1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost. 2010;8:379–88.

    Article  PubMed  CAS  Google Scholar 

  125. Domotor E, Benzakour O, Griffin JH, Yule D, Fukudome K, Zlokovic BV. Activated protein C alters cytosolic calcium flux in human brain endothelium via binding to endothelial protein C receptor and activation of protease activated receptor-1. Blood. 2003;101:4797–801.

    Article  PubMed  CAS  Google Scholar 

  126. Cheng T, Petraglia AL, Li Z, Thiyagarajan M, Zhong Z, Wu Z, et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med. 2006;12:1278–85.

    Article  PubMed  CAS  Google Scholar 

  127. Guo H, Liu D, Gelbard H, Cheng T, Insalaco R, Fernández JA, et al. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron. 2004;41:563–72.

    Article  PubMed  CAS  Google Scholar 

  128. Kerschen EJ, Fernandez JA, Cooley BC, Yang XV, Sood R, Mosnier LO, et al. Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J Exp Med. 2007;204:2439–48.

    Article  PubMed  CAS  Google Scholar 

  129. Mosnier LO, Yang XV, Griffin JH. Activated protein C mutant with minimal anticoagulant activity, normal cytoprotective activity, and preservation of thrombin activable fibrinolysis inhibitor-dependent cytoprotective functions. J Biol Chem. 2007;282:33022–33.

    Article  PubMed  CAS  Google Scholar 

  130. Bae JS, Yang L, Rezaie AR. Receptors of the protein C activation and activated protein C signaling pathways are colocalized in lipid rafts of endothelial cells. Proc Natl Acad Sci USA. 2007;104:2867–72.

    Article  PubMed  CAS  Google Scholar 

  131. Russo A, Soh UJ, Trejo J. Proteases display biased agonism at protease-activated receptors: location matters! Mol Interv. 2009;9:87–96.

    Article  PubMed  CAS  Google Scholar 

  132. Bae JS, Yang L, Rezaie AR. Lipid raft localization regulates the cleavage specificity of protease activated receptor 1 in endothelial cells. J Thromb Haemost. 2008;6:954–61.

    Article  PubMed  CAS  Google Scholar 

  133. Bae JS, Rezaie AR. Protease activated receptor 1 (PAR-1) activation by thrombin is protective in human pulmonary artery endothelial cells if endothelial protein C receptor is occupied by its natural ligand. Thromb Haemost. 2008;100:101–9.

    PubMed  CAS  Google Scholar 

  134. Schuepbach RA, Feistritzer C, Brass LF, Riewald M. Activated protein C-cleaved protease activated receptor-1 is retained on the endothelial cell surface even in the presence of thrombin. Blood. 2008;111:2667–73.

    Article  PubMed  CAS  Google Scholar 

  135. Soh UJ, Trejo J. Activated protein C promotes protease-activated receptor-1 cytoprotective signaling through beta-arrestin and dishevelled-2 scaffolds. Proc Natl Acad Sci USA. 2011;108:E1372–80.

    Article  PubMed  CAS  Google Scholar 

  136. Baumer Y, Spindler V, Werthmann RC, Bunemann M, Waschke J. Role of Rac 1 and cAMP in endothelial barrier stabilization and thrombin-induced breakdown. J Cell Phys. 2009;220:716–26.

    Article  CAS  Google Scholar 

  137. Spindler V, Schlegel N, Waschke J. Role of GTPases in control of microvascular permeability. Cardiovasc Res. 2010;87:243–53.

    Article  PubMed  CAS  Google Scholar 

  138. Bir N, Lafargue M, Howard M, Goolaerts A, Roux J, Carles M, et al. Cytoprotective-selective activated protein C attenuates Pseudomonas aeruginosa-induced lung injury in mice. Am J Respir Cell Mol Biol. 2011;45:632–41.

    Article  PubMed  CAS  Google Scholar 

  139. Bae JS, Rezaie AR. Thrombin inhibits nuclear factor kappaB and RhoA pathways in cytokine-stimulated vascular endothelial cells when EPCR is occupied by protein C. Thromb Haemost. 2009;101:513–20.

    PubMed  CAS  Google Scholar 

  140. Wang L, Dudek SM. Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc Res. 2009;77:39–45.

    Article  PubMed  CAS  Google Scholar 

  141. White TC, Berny MA, Tucker EI, Urbanus RT, de Groot PG, Fernandez JA, et al. Protein C supports platelet binding and activation under flow: role of glycoprotein Ib and apolipoprotein E receptor 2. J Thromb Haemost. 2008;6:995–1002.

    Article  PubMed  CAS  Google Scholar 

  142. Guo H, Singh I, Wang Y, Deane R, Barrett T, Fernandez JA, et al. Neuroprotective activities of activated protein C mutant with reduced anticoagulant activity. Eur J Neurosci. 2009;29:1119–30.

    Article  PubMed  Google Scholar 

  143. Madhusudhan T, Wang H, Straub BK, Grone E, Zhou Q, Shahzad K, et al. Cytoprotective signaling by activated protein C requires protease activated receptor-3 in podocytes. Blood. 2012;119:874–83.

    Article  PubMed  CAS  Google Scholar 

  144. Elphick GF, Sarangi PP, Hyun YM, Hollenbaugh JA, Ayala A, Biffl WL, et al. Recombinant human activated protein C inhibits integrin-mediated neutrophil migration. Blood. 2009;113:4078–85.

    Article  PubMed  CAS  Google Scholar 

  145. Minhas N, Xue M, Fukudome K, Jackson CJ. Activated protein C utilizes the angiopoietin/Tie2 axis to promote endothelial barrier function. FASEB J. 2010;24:873–81.

    Article  PubMed  CAS  Google Scholar 

  146. Zhong Z, Ilieva H, Hallagan L, Bell R, Singh I, Paquette N, et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J Clin Invest. 2009;119:3437–49.

    PubMed  CAS  Google Scholar 

  147. Xue M, Chow SO, Dervish S, Chan YK, Julovi S, Jackson CJ. Activated protein C enhances human keratinocyte barrier integrity via sequential activation of epidermal growth factor receptor and tie2. J Biol Chem. 2011;286:6742–50.

    Article  PubMed  CAS  Google Scholar 

  148. Yang XV, Banerjee Y, Fernandez JA, Deguchi H, Xu X, Mosnier LO, et al. Activated protein C ligation of ApoER2 (LRP8) causes Dab1-dependent signaling in U937 cells. Proc Natl Acad Sci USA. 2009;106:274–9.

    Article  PubMed  CAS  Google Scholar 

  149. Cao C, Gao Y, Li Y, Antalis TM, Castellino FJ, Zhang L. The efficacy of activated protein C in murine endotoxemia is dependent on integrin CD11b. J Clin Invest. 2010;120:1971–80.

    Article  PubMed  CAS  Google Scholar 

  150. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med. 2007;13:1349–58.

    Article  PubMed  CAS  Google Scholar 

  151. Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.

    Article  PubMed  CAS  Google Scholar 

  152. Wildhagen KC, Lutgens E, Loubele ST, Ten CH, Nicolaes GA. The structure–function relationship of activated protein C. Thromb Haemost. 2011;106:1034–45.

    Article  PubMed  CAS  Google Scholar 

  153. Weiler H. Multiple receptor-mediated functions of activated protein C. Hamostaseologie. 2011;31:185–95.

    Article  PubMed  CAS  Google Scholar 

  154. Mosnier LO, Gale AJ, Yegneswaran S, Griffin JH. Activated protein C variants with normal cytoprotective but reduced anticoagulant activity. Blood. 2004;104:1740–5.

    Article  PubMed  CAS  Google Scholar 

  155. Mather T, Oganessyan V, Hof P, Huber R, Foundling S, Esmon CT, et al. The 2.8 Å crystal structure of Gla-domainless activated protein C. EMBO J. 1996;15:6822–31.

    PubMed  CAS  Google Scholar 

  156. Shen L, Villoutreix BO, Dahlbäck B. Involvement of lys 62(217) and lys 63(218) of human anticoagulant protein C in heparin stimulation of inhibition by the protein C inhibitor. Thromb Haemost. 1999;82:72–9.

    PubMed  CAS  Google Scholar 

  157. Bae JS, Yang L, Manithody C, Rezaie AR. Engineering a disulfide bond to stabilize the calcium binding loop of activated protein C eliminates its anticoagulant but not protective signaling properties. J Biol Chem. 2007;282:9251–9.

    Article  PubMed  CAS  Google Scholar 

  158. Yang L, Bae JS, Manithody C, Rezaie AR. Identification of a specific exosite on activated protein C for interaction with protease activated receptor 1. J Biol Chem. 2007;282:25493–500.

    Article  PubMed  CAS  Google Scholar 

  159. Preston RJ, Villegas-Mendez A, Sun YH, Hermida J, Simioni P, Philippou H, et al. Selective modulation of protein C affinity for EPCR and phospholipids by Gla domain mutation. FEBS J. 2005;272:97–108.

    Article  PubMed  CAS  Google Scholar 

  160. Ni Ainle F, O’Donnell JS, Johnson JA, Brown L, Gleeson EM, Smith OP, et al. Activated protein C N-linked glycans modulate cytoprotective signaling function on endothelial cells. J Biol Chem. 2011;286:1323–30.

    Article  PubMed  CAS  Google Scholar 

  161. Guo H, Wang Y, Singh I, Liu D, Fernandez JA, Chow N, et al. Species-dependent neuroprotection by activated protein C mutants with reduced anticoagulant activity. J Neurochem. 2009;109:116–24.

    Article  PubMed  CAS  Google Scholar 

  162. Fernández JA, Xu X, Liu D, Zlokovic BV, Griffin JH. Recombinant murine-activated protein C is neuroprotective in a murine ischemic stroke model. Blood Cells Mol Dis. 2003;30:271–6.

    Article  PubMed  CAS  Google Scholar 

  163. Shibata M, Kumar SR, Amar A, Fernández JA, Hofman F, Griffin JH, et al. Anti-inflammatory, antithrombotic, and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation. 2001;103:1799–805.

    PubMed  CAS  Google Scholar 

  164. Zlokovic BV, Zhang C, Liu D, Fernández JA, Griffin JH, Chopp M. Functional recovery after embolic stroke in rodents by activated protein C. Ann Neurol. 2005;58:474–7.

    Article  PubMed  CAS  Google Scholar 

  165. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature. 2008;451:1076–81.

    Article  PubMed  CAS  Google Scholar 

  166. Liu D, Cheng T, Guo H, Fernández JA, Griffin JH, Song X, et al. Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med. 2004;10:1379–83.

    Article  PubMed  CAS  Google Scholar 

  167. Villoutreix BO, Teleman O, Dahlback B. A theoretical model for the Gla-TSR-EGF-1 region of the anticoagulant cofactor protein S: from biostructural pathology to species-specific cofactor activity. J Comput Aided Mol Des. 1997;11:293–304.

    Article  PubMed  CAS  Google Scholar 

  168. Drakenberg T, Ghasriani H, Thulin E, Thamlitz AM, Muranyi A, Annila A, et al. Solution structure of the Ca2+-binding EGF3-4 pair from vitamin K-dependent protein S: identification of an unusual fold in EGF3. Biochemistry. 2005;44:8782–9.

    Article  PubMed  CAS  Google Scholar 

  169. Villoutreix BO, Dahlback B, Borgel D, Gandrille S, Muller YA. Three-dimensional model of SHBG-like region of anticoagulant protein S: new structure-function insights. Proteins. 2001;43:203–16.

    Article  PubMed  CAS  Google Scholar 

  170. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.

    Article  PubMed  CAS  Google Scholar 

  171. Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815.

    Article  PubMed  CAS  Google Scholar 

  172. Pellequer JL, Gale AJ, Getzoff ED, Griffin JH. Three-dimensional model of coagulation factor Va bound to activated protein C. Thromb Haemost. 2000;84:849–57.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge helpful discussions with members of the Griffin, Zlokovic and Mosnier laboratories. We apologize to our colleagues whose excellent work was not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Griffin.

About this article

Cite this article

Griffin, J.H., Zlokovic, B.V. & Mosnier, L.O. Protein C anticoagulant and cytoprotective pathways. Int J Hematol 95, 333–345 (2012). https://doi.org/10.1007/s12185-012-1059-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1059-0

Keywords

Navigation