Skip to main content

Advertisement

Log in

Review of Meniscus Anatomy and Biomechanics

  • Meniscus (A Kyrch, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Anatomic repair of meniscal pathology is critical for restoring native joint biomechanics and kinematics for patients who suffer from meniscal tears. The purpose of this review was to summarize the pertinent anatomy, biomechanics, and kinematics of the meniscus to guide surgeons during meniscal repair procedures.

Recent Findings

Over the past decade, there has been a growing trend to save the meniscus whenever possible. The goal of repair should be to recreate native anatomy as close as possible to recapitulate normal mechanics. Studies describing the quantitative and qualitative relationship of the meniscus roots, ligaments, and attachments are key in guiding any meniscus repair. This review summarizes these relationships, with particular emphasis on meniscal roots and other key attachments to the meniscus. The composition, embryology, vascularization, biomechanics, in vivo kinetics, and in vivo kinematics of the meniscus are also discussed in this review.

Summary

Meniscal tears can cause profound functional, biomechanical, and kinematic derangements within the knee joint leading to accelerated degeneration of the articular cartilage. A strong understanding of the quantitative and qualitative relationships of the meniscus and its attachments with key arthroscopic landmarks will allow a surgeon to anatomically repair meniscal pathology in order to restore native joint biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kean CO, Brown RJ, Chapman J. The role of biomaterials in the treatment of meniscal tears. PeerJ. 2017;5:e4076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Shimomura K, Hamamoto S, Hart DA, Yoshikawa H, Nakamura N. Meniscal repair and regeneration: current strategies and future perspectives. J Clin Orthop Trauma. 2018;9(3):247–53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pereira H, Fatih Cengiz I, Gomes S, Espregueira-Mendes J, Ripoll PL, Monllau JC, Reis RL, Oliveira JM. Meniscal allograft transplants and new scaffolding techniques. EFORT Open Rev. 2019;4(6):279–95.

    Article  PubMed  PubMed Central  Google Scholar 

  4. LaPrade RF, Chahla J. Evidence-based management of complex knee injuries: restoring the anatomy to achieve best outcomes. St. Louis: Elsevier; 2021.

    Google Scholar 

  5. Chahla J, Cinque ME, Godin JA, Sanchez G, Lebus GF, Whalen JM, Price MD, Kennedy NI, Moatshe G, LaPrade RF, Provencher MT. Meniscectomy and resultant articular cartilage lesions of the knee among prospective national football league players: an imaging and performance analysis. Am J Sports Med. 2018;46(1):200–7.

    Article  PubMed  Google Scholar 

  6. Woodmass JM, LaPrade RF, Sgaglione NA, Nakamura N, Krych AJ. Meniscal repair: reconsidering indications, techniques, and biologic augmentation. JBJS. 2017;99(14):1222–31.

    Article  Google Scholar 

  7. Vyas KK, Vaniya VH, Kodiyatar BB. Morphological study of menisci of knee joint in human cadavers. Int J Anat Radiol Surg. 2018;7(4):AO10–AO4.

    Google Scholar 

  8. Murlimanju BV, Nair N, Ray B, Pai MM, Amin S, Pai SR. Morphological variants of lateral meniscus of the knee: a cadaveric study in South Indian human fetuses. Anat Sci Int. 2010;86(2):63–8.

    Article  PubMed  Google Scholar 

  9. DePhillipo N, Moatshe G, Chahla J, Aman ZS, Storaci HW, Morris ER, et al. Quantitative and qualitative assessment of the posterior medial meniscus anatomy: defining meniscal ramp lesions. Am J Sports Med. 2018;47(2):372–8. Descriptive laboratory study establishing the anatomic basis for posterior medial meniscus capsular and tibial attachments. It is directly relevant for defining meniscus ramp lesions.

  10. Rashmi BN, Dakshayani KR, Vadiraja N. Morphometric study of menisci of knee joints in adult cadavers. Int J Anat Res. 2016;4(4.1):2973-8.

  11. Hathila SB, Sarvaiya BJ, Vaniya VH, Kulkarni M. A cadaveric study indicating clinical significance of relation between area of menisci with corresponding tibial plateau and that of distance between anterior horn and posterior horn of menisci. Int J Anat Res. 2019;7(1.2):6198–203.

    Article  Google Scholar 

  12. Śmigielski R, Becker R, Zdanowicz U, Ciszek B. Medial meniscus anatomy—from basic science to treatment. Knee Surg, Sports Traumatol, Arthrosc Off J ESSKA. 2014;23(1):8–14.

    Article  Google Scholar 

  13. Zdanowicz U, Śmigielski R, Espejo-Reina A, Espejo-Baena A, Madry H. Anatomy and vascularisation. Berlin: Springer Berlin Heidelberg; 2016. p. 15–21.

    Google Scholar 

  14. Noyes FR, Barber-Westin SD. Arthroscopic repair of meniscus tears extending into the avascular zone with or without anterior cruciate ligament reconstruction in patients 40 years of age and older. Arthroscopy. 2000;16(8):822–9.

    Article  CAS  PubMed  Google Scholar 

  15. Lee S-S, Ahn JH, Kim JH, Kyung BS, Wang JH. Evaluation of healing after medial meniscal root repair using second-look arthroscopy, clinical, and radiological criteria. Am J Sports Med. 2018;46(11):2661–8.

    Article  PubMed  Google Scholar 

  16. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    Article  CAS  PubMed  Google Scholar 

  17. Fukazawa I, Hatta T, Uchio Y, Otani H. Development of the meniscus of the knee joint in human fetuses. Congenit Anom. 2009;49(1):27–32.

    Article  Google Scholar 

  18. Bloecker K, Wirth W, Hudelmaier M, Burgkart R, Frobell R, Eckstein F. Morphometric differences between the medial and lateral meniscus in healthy men – a three-dimensional analysis using magnetic resonance imaging. Cells, Tissues, Organs. 2012;195(4):353–64.

    Article  CAS  PubMed  Google Scholar 

  19. Rohilla J, Rathee SK, Dhattarwal SK, Kundu Z. Morphometric analysis of menisci of adult human knee joint in North Indian population. Int J Res Med Sci. 2017;5:569.

    Article  Google Scholar 

  20. Jacob G, Shimomura K, Krych AJ, Nakamura N. The meniscus tear: a review of stem cell therapies. Cells. 2019;9(1):92.

    Article  PubMed Central  Google Scholar 

  21. LaPrade RF, Floyd ER, Carlson GB, Moatshe G, Chahla J, Monson JK. Meniscal root tears: solving the silent epidemic. J Arthrosc Surg Sports Med 2.

  22. Simonian PT, Sussmann PS, van Trommel M, Wickiewicz TL, Warren RF. Popliteomeniscal fasciculi and lateral meniscal stability. Am J Sports Med. 1997;25(6):849–53.

    Article  CAS  PubMed  Google Scholar 

  23. Stärke CMD, Kopf SMD, Gröbel K-HMS, Becker RMD. The effect of a nonanatomic repair of the meniscal horn attachment on meniscal tension: a biomechanical study. Arthroscopy. 2010;26(3):358–65.

    Article  PubMed  Google Scholar 

  24. Laprade CM, Ellman MB, Rasmussen MT, James EW, Wijdicks CA, Engebretsen L, et al. Anatomy of the anterior root attachments of the medial and lateral menisci. Am J Sports Med. 2014;42(10):2386–92. Descriptive laboratory study establishing the quantitative parameters of the anterior meniscal roots as well as the anatomical relationships and pertinent surgical landmarks.

  25. Chahla J, LaPrade RF. Meniscal root tears. Arthroscopy. 2019;35(5):1304–5.

    Article  PubMed  Google Scholar 

  26. Allaire R, Muriuki M, Gilbertson L, Harner CD. Biomechanical consequences of a tear of the posterior root of the medial meniscus: similar to total meniscectomy. J Bone Joint Surg Am. 2008;90(9):1922–31. Landmark biomechanical study that reported the increase in medial compartment contact pressures after medial meniscus posterior root tear is comparable to those of a total meniscectomy.

  27. Harner CD, Mauro CS, Lesniak BP, Romanowski JR. Biomechanical consequences of a tear of the posterior root of the medial meniscus: surgical technique. J Bone Joint Surg Am. 2009;91(Suppl 2):257–70.

    Article  PubMed  Google Scholar 

  28. Johannsen AM, Civitarese DM, Padalecki JR, Goldsmith MT, Wijdicks CA, LaPrade RF. Qualitative and quantitative anatomic analysis of the posterior root attachments of the medial and lateral menisci. Am J Sports Med. 2012;40(10):2342–7. Descriptive laboratory study establishing the quantitative parameters of the posterior meniscal roots as well as anatomical relationships and pertinent surgical landmarks.

  29. Hussain ZB, Chahla J, Mandelbaum BR, Gomoll AH, LaPrade RF. The role of meniscal tears in spontaneous osteonecrosis of the knee: a systematic review of suspected etiology and a call to revisit Nomenclature. Am J Sports Med. 2019;47(2):501–7.

  30. Perry AK, Lavoie-Gagne O, Knapik DM, Maheshwer B, Hodakowski A, Gursoy S, et al. Examining the efficacy of medial meniscus posterior root repair: a meta-analysis and systematic review of biomechanical and clinical outcomes. Am J Sports Med. 2022:036354652210772. Systematic review revealing improvement of clinical outcomes as well as delayed progression to severe knee osteoartrhitis after meniscal root repair.

  31. Krivicich LM, Kunze KN, Parvaresh KC, Jan K, DeVinney A, Vadhera A, LaPrade RF, Chahla J. Comparison of long-term radiographic outcomes and rate and time for conversion to total knee arthroplasty between repair and meniscectomy for medial meniscus posterior root tears: a systematic review and meta-analysis. Am J Sports Med. 2021:3635465211017514.

  32. Aydıngöz Ü, Kaya A, Atay AÖ, Öztürk HM, Doral NM. MR imaging of the anterior intermeniscal ligament: classification according to insertion sites. Eur Radiol. 2002;12(4):824–9.

    Article  PubMed  Google Scholar 

  33. Guess TM, Razu SS, Kuroki K, Cook JL. Function of the anterior intermeniscal ligament. J Knee Surg. 2018;31(1):068–74.

    Article  Google Scholar 

  34. El-Khoury GY, Usta AY, Berger RA. Meniscotibial (coronary) ligament tears. Skelet Radiol. 1984;11(3):191–6.

    Article  CAS  Google Scholar 

  35. Jacobson KE, Chi FS. Evaluation and treatment of medial collateral ligament and medial-sided injuries of the knee. Sports Med Arthrosc Rev. 2006;14(2):58–66.

    Article  PubMed  Google Scholar 

  36. Sims WF, Jacobson KE. The posteromedial corner of the knee: medial-sided injury patterns revisited. Am J Sports Med. 2004;32(2):337–45.

    Article  PubMed  Google Scholar 

  37. Aman ZS, DePhillipo NN, Storaci HW, Moatshe G, Chahla J, Engebretsen L, et al. Quantitative and qualitative assessment of posterolateral meniscal anatomy: defining the popliteal hiatus, popliteomeniscal fascicles, and the lateral meniscotibial ligament. Am J Sports Med. 2019;47(8):1797–803. Descriptive laboratory study establishing the anatomic foundation for an improved understanding of the role of the meniscocapsular, meniscotibial, and popliteomeniscal fascicle attachments of the posterolateral meniscus.

  38. Stäubli HU, Birrer S. The popliteus tendon and its fascicles at the popliteal hiatus: gross anatomy and functional arthroscopic evaluation with and without anterior cruciate ligament deficiency. Arthroscopy. 1990;6(3):209–20.

    Article  PubMed  Google Scholar 

  39. Krudwig WK, Witzel U, Ullrich K. Posterolateral aspect and stability of the knee joint. II. Posterolateral instability and effect of isolated and combined posterolateral reconstruction on knee stability: a biomechanical study. Knee Surg, Sports Traumatol, Arthrosc Off J ESSKA. 2002;10(2):91–5.

    Article  Google Scholar 

  40. Ullrich K, Krudwig WK, Witzel U. Posterolateral aspect and stability of the knee joint. I. Anatomy and function of the popliteus muscle-tendon unit: an anatomical and biomechanical study. Knee Surg, Sports Traumatol, Arthrosc Off J ESSKA. 2002;10(2):86–90.

    Article  Google Scholar 

  41. Peduto AJ, Nguyen A, Trudell DJ, Resnick DL. Popliteomeniscal fascicles: anatomic considerations using MR arthrography in cadavers. Am J Roentgenol (1976). 2008;190(2):442–8.

    Article  Google Scholar 

  42. Andrews S. Meniscus Structure and Function. 2013.

  43. LaPrade RF, Konowalchuk BK. Popliteomeniscal fascicle tears causing symptomatic lateral compartment knee pain: diagnosis by the figure-4 test and treatment by open repair. Am J Sports Med. 2005;33(8):1231–6.

    Article  PubMed  Google Scholar 

  44. Natsis K, Paraskevas G, Anastasopoulos N, Papamitsou T, Sioga A. Meniscofibular ligament: morphology and functional significance of a relatively unknown anatomical structure. Anat Res Int. 2012;2012:214784–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bozkurt M, Elhan A, Tekdemir I, Tönük E. An anatomical study of the meniscofibular ligament. Knee Surg Sports Traumatol Arthrosc. 2004;12(5):429–33.

    Article  PubMed  Google Scholar 

  46. LaPrade R, Arendt EA, Getgood A, Faucett S. The menisci, a comprehensive review of their anatomy, Biomechanical Function and Surgical Treatment. 2017. 1-198 p.

  47. Amis AA, Gupte CM, Bull AMJ, Edwards A. Anatomy of the posterior cruciate ligament and the meniscofemoral ligaments. Knee Surg, Sports Traumatol, Arthrosc Off J ESSKA. 2006;14(3):257–63.

    Article  CAS  Google Scholar 

  48. Gupte CM, Bull AMJ, Thomas RD, Amis AA. A review of the function and biomechanics of the meniscofemoral ligaments. Arthroscopy. 2003;19(2):161–71.

    Article  PubMed  Google Scholar 

  49. Gupte CM, Smith A, McDermott ID, Bull AMJ, Thomas RD, Amis AA. Meniscofemoral ligaments revisited. J Bone Joint Surg Br. 2002;84-B(6):846–51.

    Article  Google Scholar 

  50. Brindle T, Nyland J, Johnson DL. The meniscus: review of basic principles with application to surgery and rehabilitation. J Athl Train. 2001;36(2):160–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gee SM, Posner M. Meniscus anatomy and basic science. Sports Med Arthrosc Rev. 2021;29(3):e18–23.

    Article  PubMed  Google Scholar 

  52. Markes AR, Hodax JD, Ma CB. Meniscus form and function. Clin Sports Med. 2020;39(1):1–12.

    Article  PubMed  Google Scholar 

  53. Fox AJS, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012;4(4):340–51. Literature review on the structural, compositional and functional characteristics of the menisci.

  54. Yaniv M, Blumberg N. The discoid meniscus. J Child Orthop. 2007;1(2):89–96.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Clark CR, Ogden JA. Prenatal and postnatal development of human knee joint menisci. Iowa Orthop J. 1981;1:20–7.

    PubMed Central  Google Scholar 

  56. Rath E, Richmond JC. The menisci: basic science and advances in treatment. Br J Sports Med. 2000;34(4):252–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kocher MS, Logan CA, Kramer DE. Discoid lateral meniscus in children: diagnosis, management, and outcomes. J Am Acad Orthop Surg. 2017;25(11):736–43.

    Article  PubMed  Google Scholar 

  58. Bhan K. Meniscal tears: current understanding, diagnosis, and management. Cureus. 2020;12(6):e8590–e.

    PubMed  PubMed Central  Google Scholar 

  59. Bilgen B, Jayasuriya CT, Owens BD. Current concepts in meniscus tissue engineering and repair. Adv Healthc Mater. 2018;7(11):e1701407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5. Landmark microvascular anatomical study of the menisci, revealing arterial supply by the geniculate arteries and peripheral penetration of the perimeniscal capillary plexus.

  61. Crawford MD, Hellwinkel JE, Aman Z, Akamefula R, Singleton JT, Bahney C, LaPrade RF. Microvascular anatomy and intrinsic gene expression of menisci from young adults. Am J Sports Med. 2020;48(13):3147–53.

    Article  PubMed  Google Scholar 

  62. Chahla J, Cinque ME, Godin JA, Geeslin AG, Moatshe G, LaPrade RF. Review of Arnoczky and Warren on the microvasculature of the human meniscus. Journal of ISAKOS. 2017;2(4):229–32.

    Article  Google Scholar 

  63. Travascio F, Jackson AR. The nutrition of the human meniscus: a computational analysis investigating the effect of vascular recession on tissue homeostasis. J Biomech. 2017;61:151–9.

    Article  PubMed  Google Scholar 

  64. Fox AJ, Wanivenhaus F, Burge AJ, Warren RF, Rodeo SA. The human meniscus: a review of anatomy, function, injury, and advances in treatment. Clin Anat. 2015;28(2):269–87.

    Article  PubMed  Google Scholar 

  65. Chahla J, Papalamprou A, Chan V, Arabi Y, Salehi K, Nelson TJ, Limpisvasti O, Mandelbaum BR, Tawackoli W, Metzger MF, Sheyn D. Assessing the resident progenitor cell population and the vascularity of the adult human meniscus. Arthroscopy. 2021;37(1):252–65.

    Article  PubMed  Google Scholar 

  66. Cinque ME, Dephillipo NN, Moatshe G, Chahla J, Kennedy MI, Dornan GJ, et al. Clinical outcomes of inside-out meniscal repair according to anatomic zone of the meniscal tear. Orthop J Sports Med. 2019;7(7):232596711986080.

    Article  Google Scholar 

  67. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.

    Article  Google Scholar 

  68. Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution in synovial joints--Part I: Tibial surface of the knee. J Biomech Eng. 1983;105(3):216–25.

    Article  CAS  PubMed  Google Scholar 

  69. Goyal KS, Pan TJ, Tran D, Dumpe SC, Zhang X, Harner CD. Vertical tears of the lateral meniscus: effects on in vitro tibiofemoral joint mechanics. Orthop J Sports Med. 2014;2(8):2325967114541237.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang K, Li L, Yang L, Shi J, Zhu L, Liang H, et al. The biomechanical changes of load distribution with longitudinal tears of meniscal horns on knee joint: a finite element analysis. J Orthop Surg Res. 2019;14(1):237.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chen Z, Zhang H, Luo H, Yang R, Zhang Z, Jiang C, Hou J, Zhou Y, Xu Y, Song B, Li W. Contact mechanics after mattress suture repair of medial meniscus vertical longitudinal tear: an in vitro study. Arch Orthop Trauma Surg. 2020;140(9):1221–30.

    Article  PubMed  Google Scholar 

  72. Beamer BS, Walley KC, Okajima S, Manoukian OS, Perez-Viloria M, DeAngelis JP, et al. Changes in contact area in meniscus horizontal cleavage tears subjected to repair and resection. Arthroscopy. 2017;33(3):617–24.

    Article  PubMed  Google Scholar 

  73. Brown MJ, Farrell JP, Kluczynski MA, Marzo JM. Biomechanical effects of a horizontal medial meniscal tear and subsequent leaflet resection. Am J Sports Med. 2016;44(4):850–4.

    Article  PubMed  Google Scholar 

  74. Koh JL, Yi SJ, Ren Y, Zimmerman TA, Zhang LQ. Tibiofemoral contact mechanics with horizontal cleavage tear and resection of the medial meniscus in the human knee. J Bone Joint Surg Am. 2016;98(21):1829–36.

    Article  PubMed  Google Scholar 

  75. Cinque ME, Chahla J, Moatshe G, Faucett SC, Krych AJ, LaPrade RF. Meniscal root tears: a silent epidemic. Br J Sports Med. 2018;52(13):872–6.

    Article  PubMed  Google Scholar 

  76. Bedi A, Kelly NH, Baad M, Fox AJ, Brophy RH, Warren RF, et al. Dynamic contact mechanics of the medial meniscus as a function of radial tear, repair, and partial meniscectomy. J Bone Joint Surg Am. 2010;92(6):1398–408.

    Article  PubMed  Google Scholar 

  77. Tachibana Y, Mae T, Fujie H, Shino K, Ohori T, Yoshikawa H, Nakata K. Effect of radial meniscal tear on in situ forces of meniscus and tibiofemoral relationship. Knee Surg Sports Traumatol Arthrosc. 2017;25(2):355–61.

    Article  PubMed  Google Scholar 

  78. Marsh CA, Martin DE, Harner CD, Tashman S. Effect of posterior horn medial meniscus root tear on in vivo knee kinematics. Orthop J Sports Med. 2014;2(7):2325967114541220.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ishii Y, Ishikawa M, Kurumadani H, Hayashi S, Nakamae A, Nakasa T, Sumida Y, Tsuyuguchi Y, Kanemitsu M, Deie M, Adachi N, Sunagawa T. Increase in medial meniscal extrusion in the weight-bearing position observed on ultrasonography correlates with lateral thrust in early-stage knee osteoarthritis. J Orthop Sci. 2020;25(4):640–6.

    Article  PubMed  Google Scholar 

  80. Wink AE, Gross KD, Brown CA, Guermazi A, Roemer F, Niu J, Torner J, Lewis CE, Nevitt MC, Tolstykh I, Sharma L, Felson DT. Varus thrust during walking and the risk of incident and worsening medial tibiofemoral MRI lesions: the Multicenter Osteoarthritis Study. Osteoarthr Cartil. 2017;25(6):839–45.

    Article  CAS  Google Scholar 

  81. Sharma L, Chang AH, Jackson RD, Nevitt M, Moisio KC, Hochberg M, Eaton C, Kwoh CK, Almagor O, Cauley J, Chmiel JS. Varus thrust and incident and progressive knee osteoarthritis. Arthritis Rheumatol. 2017;69(11):2136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Leporace G, Gonzalez F, Metsavaht L, Motta M, Carpes FP, Chahla J, et al. Are there different gait profiles in patients with advanced knee osteoarthritis? A machine learning approach. Clin Biomech (Bristol, Avon). 2021;88:105447.

    Article  Google Scholar 

  83. Zhao D, Banks SA, Mitchell KH, D'Lima DD, Colwell CW Jr, Fregly BJ. Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res. 2007;25(6):789–97.

    Article  PubMed  Google Scholar 

  84. Birmingham TB, Hunt MA, Jones IC, Jenkyn TR, Giffin JR. Test-retest reliability of the peak knee adduction moment during walking in patients with medial compartment knee osteoarthritis. Arthritis Rheum. 2007;57(6):1012–7.

    Article  PubMed  Google Scholar 

  85. Erhart-Hledik JC, Favre J, Andriacchi TP. New insight in the relationship between regional patterns of knee cartilage thickness, osteoarthritis disease severity, and gait mechanics. J Biomech. 2015;48(14):3868–75.

    Article  PubMed  Google Scholar 

  86. Thorlund JB, Holsgaard-Larsen A, Creaby MW, Jørgensen GM, Nissen N, Englund M, Lohmander LS. Changes in knee joint load indices from before to 12 months after arthroscopic partial meniscectomy: a prospective cohort study. Osteoarthr Cartil. 2016;24(7):1153–9. In vivo biomechanics study reporting the consequences of a partial meniscectomy.

  87. Hall M, Wrigley TV, Metcalf BR, Hinman RS, Cicuttini FM, Dempsey AR, et al. Mechanisms underpinning the peak knee flexion moment increase over 2-years following arthroscopic partial meniscectomy. Clin Biomech (Bristol, Avon). 2015;30(10):1060–5.

    Article  Google Scholar 

  88. Capin JJ, Khandha A, Zarzycki R, Manal K, Buchanan TS, Snyder-Mackler L. Gait mechanics after ACL reconstruction differ according to medial meniscal treatment. J Bone Joint Surg Am. 2018;100(14):1209–16. In vivo biomechanics study demonstrating elevated knee adduction moment in patients who underwent ACL reconstruction and concomitant partial meniscectomy versus concomitant meniscal repair.

  89. Capin JJ, Khandha A, Buchanan TS, Snyder-Mackler L. Partial medial meniscectomy leads to altered walking mechanics two years after anterior cruciate ligament reconstruction: meniscal repair does not. Gait Posture. 2019;74:87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Huang W, Yao Z, Ma L, Lin Z, Wang S, Huang H. Anterior cruciate ligament injuries alter the kinematics of knees with or without meniscal deficiency. Am J Sports Med. 2016;44(12):3132–9.

    Article  PubMed  Google Scholar 

  91. Hosseini A, Li J-S, Gill TJT, Li G. Meniscus injuries alter the kinematics of knees with anterior cruciate ligament deficiency. Orthop J Sports Med. 2014;2(8):2325967114547346.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Harato K, Niki Y, Kudo Y, Sakurai A, Nagura T, Hasegawa T, Masumoto K, Otani T. Effect of unstable meniscal injury on three-dimensional knee kinematics during gait in anterior cruciate ligament-deficient patients. Knee. 2015;22(5):395–9.

    Article  PubMed  Google Scholar 

  93. Ren S, Yu Y, Shi H, Miao X, Jiang Y, Liang Z, Hu X, Huang H, Ao Y. Three dimensional knee kinematics and kinetics in ACL-deficient patients with and without medial meniscus posterior horn tear during level walking. Gait Posture. 2018;66:26–31.

    Article  PubMed  Google Scholar 

  94. Wang M, Lin Z, Wang W, Chen L, Xia H, Zhang Y, Huang W. Kinematic alterations after anterior cruciate ligament reconstruction via transtibial techniques with medial meniscal repair versus partial medial meniscectomy. Am J Sports Med. 2021:036354652110339.

  95. Li Y, Wu Y, Zeng Y, Gu D. Biomechanical differences before and after arthroscopic partial meniscectomy in patients with semilunar and discoid lateral meniscus injury. Am J Transl Res. 2020;12(6):2793–804.

    PubMed  PubMed Central  Google Scholar 

  96. Lin Z, Huang W, Ma L, Chen L, Huang Z, Zeng X, et al. Kinematic features in patients with lateral discoid meniscus injury during walking. Sci Rep. 2018;8(1):5053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Chahla.

Ethics declarations

Conflict of Interest

Dr. Jorge Chahla is a board member for AOSSM, Arthroscopy AANA, and ISAKOS and a paid consultant for Smith and Nephew, Arthrex, Conmed, and Ossur.

Dr. Adam Yanke is a paid consultant for Allosource, Conmed, JRF Ortho, and Olympus; an unpaid consultant for Smith and Nephew, Patient IQ, and Sparta Biomedical; and does research support for Arthrex, Organogenesis, and Vericel.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Meniscus

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mameri, E.S., Dasari, S.P., Fortier, L.M. et al. Review of Meniscus Anatomy and Biomechanics. Curr Rev Musculoskelet Med 15, 323–335 (2022). https://doi.org/10.1007/s12178-022-09768-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09768-1

Keywords

Navigation