Skip to main content
Log in

Development of Method Based on Dispersive Liquid-Liquid Microextraction Air-Assisted for Multi-Element Determination of Cadmium and Manganese in Sugarcane Spirit (Brazilian cachaça) by FAAS

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this work, a new method was developed for multi-element determination of Cd and Mn in samples of sugarcane spirit (cachaça) by FAAS using the air-assisted dispersive liquid-liquid microextraction (AA-DLLME). After univariate and multivariate optimizations (mixture design), the experimental conditions were as follows: 5.2 mL of sample at pH 8.5, 0.7 mL 10% (w/v) NaCl solution, 120 μL of trichlorethylene (extraction solvent) containing 1-(2-pyridylazo)-2-naphthol (PAN) at 0.05% (w/v) as chelating agent, six cycles of stirring the mixture with a glass syringe, and 3 min of centrifugation. In these conditions, the calibration curve obtained for Cd was Abs = 0.0158CCd + 0.0333, with R2 0.9951 and for Mn was Abs = 0.0011CMn + 0.0142 and R2 0.9911. The limits of detection, enrichment factor, and consumption index were, respectively, 0.51 μg L−1, 79 and 0.07 mL for Cd, and 1.64 μg L−1, 18, and 0.28 mL for Mn. Precision was evaluated at concentrations of 5 and 10 μg L−1, and RSD% (N = 10) was 0.97% and 6.6% for Cd and 2.8% and 4.5% for Mn, respectively. Addition and recovery tests in samples of Brazilian cachaça were performed to evaluate the accuracy, and recoveries were 87% to 120%, with concentrations found between 1.20 and 3.05 μg L−1 for Cd and between 6.98 and 14.4 μg L−1 for Mn. The developed method proved to be sensitive, efficient, simple, fast, and having low reagent consumption, and of applicability not previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Download references

Acknowledgments

This research was supported by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Financiadora de Estudos e Projetos (FINEP), and Santa Cruz State University (UESC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Alan C. Amorim.

Ethics declarations

Conflict of Interest

Adrielle S. Fontes has received research grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). Leonardo B. Guimarães has received research grants from Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB). Erik G. P. da Silva has received research grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Adrielle S. Fontes declares that she has no conflict of interest. Julia A. Romero declares that she has no conflict of interest. Leonardo B. Guimarães declares that he has no conflict of interest. Erik G. P. da Silva declares that he has no conflict of interest. Daniel de C. Lima declares that he has no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fontes, A.S., Romero, J.C., Guimarães, L.B. et al. Development of Method Based on Dispersive Liquid-Liquid Microextraction Air-Assisted for Multi-Element Determination of Cadmium and Manganese in Sugarcane Spirit (Brazilian cachaça) by FAAS. Food Anal. Methods 13, 222–229 (2020). https://doi.org/10.1007/s12161-019-01600-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01600-w

Keywords

Navigation