Skip to main content
Log in

Polydimethylsiloxane Gold Nanoparticle Composite Film as Structure for Aptamer-Based Detection of Vibrio parahaemolyticus by Surface-Enhanced Raman Spectroscopy

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This paper investigated a new detection method for food pathogenic bacteria Vibrio parahaemolyticus based on surface-enhanced Raman scattering (SERS). Nanostructures consisting of Aptamer-Au nanoparticles-polydimethylsiloxane (Apt-Au-PDMS film) were firstly used as SERS substrate. Aptamers were immobilized on the functionalized PDMS film covered with Au nanoparticles (AuNPs) to act as a capture structure via the affinity binding of aptamer, and Vibrio parahaemolyticus. AuNPs were modified with the aptamer and Raman reporter molecule 4-mercaptobenzoic acid (4-MBA) to act as SERS-sensing probes that bind to the target in the same way as the Apt-Au-PDMS film. The solid sandwich structure was formed by capture structure-target-SERS-sensing probes. The concentration of Vibrio parahaemolyticus can be quantified by measurement of the SERS intensity of 4-MBA. Under optimal conditions, the signal of 4-MBA at 1590 cm−1 was linearly related to the Vibrio parahaemolyticus concentration in the range between 1.2 × 102 and 1.2 × 106 cfu·mL−1. Recoveries ranging from 97.7% to 105.3% were found when analyzing spiked prawn samples. This developed ultrasensitive aptamer-based SERS detection structure suggested that it would be a promising strategy for a variety of sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Funding

This work was partially supported by Jiangsu Agriculture Science and Technology Innovation Fund CX(18)2025-01, National Natural Science Fund of China (NSFC 31871721), Project funded by China Postdoctoral Science Foundation (2017M610299, 2018T110443), Jiangsu Planned Projects for Postdoctoral Research Funds (1601087B), and Young Elite Scientists Sponsorship Program by CAST (2017QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nuo Duan or Zhouping Wang.

Ethics declarations

Conflict of Interest

Mofei Shen declares that he has no conflict of interest. Nuo Duan declares that she has no conflict of interest. Shijia Wu declares that he has no conflict of interest. Ying Zou declares that she has no conflict of interest. Zhouping Wang declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M., Duan, N., Wu, S. et al. Polydimethylsiloxane Gold Nanoparticle Composite Film as Structure for Aptamer-Based Detection of Vibrio parahaemolyticus by Surface-Enhanced Raman Spectroscopy. Food Anal. Methods 12, 595–603 (2019). https://doi.org/10.1007/s12161-018-1389-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-018-1389-5

Keywords

Navigation