Skip to main content
Log in

Characterization of Chlorogenic Acids in Coffee by Flow-Through Chronopotentiometry

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In this study, flow-through chronopotentiometry (FTCP) has been developed as an electroanalytical method for characterization (identification and quantification) of chlorogenic acids (CGAs) in coffees. The characterization of CGAs in coffee was based on the electrochemical behavior of the main chlorogenic acid (CGAs) isomers presented in coffee (caffeoylquinic acids (CQAs), dicaffeoylquinic acids (diCQAs), and feruloylquinic acids (FQAs)) and the spiking of CGAs standards in coffee samples. The FTCP study has shown that electrochemical properties of CGAs strongly depend on their chemical structure and electronic properties, particularly on the presence of electron-donating −OH, −CH═CH− and −OCH3 groups and strong electron-withdrawing ester (−COOR) group presented in their structure. The FTCP measurements of coffee samples show that their electrochemical behavior is very similar to that of CGAs. Therefore, FTCP can be used for characterization of CGAs and determination of their content in coffees. 5-O-Caffeoylquinic acid (5-CQA), prevailed CGAs in coffees, was used as a standard for quantification of total CGA content in coffee. The linear calibration curve of 5-CQA was observed within the concentration range of 5 to 100 μmol L−1 with the limit of detection 5.7·10−7 mol L−1. The total CGA content of coffees has been expressed in 5-CGA equivalents per 100 g of coffee. It was shown that FTCP is a very sensitive, precise, and acurate method for determination of total CGA content in coffee. It should be noted that in presented investigation, FTCP was for the first time used for the study of electrochemical properties of polyphenolic antioxidants (including CGAs) and their characterization in some of the food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beinrohr E (2011) Flow-through chronopotentiometry in waste water analysis. In: Garcia Einschlag FS (ed) Waste water-evaluation and management. InTech, Rijeka, pp 71–92

    Google Scholar 

  • Clifford MN (1999) Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden. J Sci Food Agric 79:362–372

    Article  CAS  Google Scholar 

  • Clifford MN, Kirkpatric J, Kuhnert N et al (2008) LC-MSn analysis of the cis isomers of chlorogenic acids. Food Chem 106:379–385

    Article  CAS  Google Scholar 

  • Crozier TWM, Stalmach A, Lean MEJ, Crozier A (2012) Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food Funct 3:30–33

    Article  CAS  Google Scholar 

  • David IG, Popa DE, Buleandra M et al (2016) Cheap pencil graphite electrodes for rapid voltammetric determination of chlorogenic acid in dietary supplements. Anal Methods 8:6537–6544

    Article  CAS  Google Scholar 

  • de Carvalho ML, Santhiago M, Peralta RA et al (2008) Determination of chlorogenic acid in coffee using a biomimetic sensor based on a new tetranuclear copper (II) complex. Talanta 77:394–399

    Article  Google Scholar 

  • Dokli I, Navarini L, Hameršak Z (2013) Syntheses of 3-, 4-, and 5-O-feruloylquinic acids. Tetrahedron Asymmetry 24:785–790

    Article  CAS  Google Scholar 

  • Duarte GS, Pereira AA, Farah A (2010) Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chem 118:851–855

    Article  CAS  Google Scholar 

  • Enache TA, Oliveira-Brett AM (2011) Phenol and para-substituted phenols electrochemical oxidation pathways. J Electroanal Chem 655:9–16

    Article  CAS  Google Scholar 

  • Eravuchira PJ, El-Abassy RM, Deshpande S, Matei MF et al (2012) Rapid spectroscopic characterization of different regioisomers of monoacyl and diacyl chlorogenic acid. Vib Spectrosc 61:10–16

    Article  CAS  Google Scholar 

  • Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Braz J Plant Physiol 18:23–36

    Article  CAS  Google Scholar 

  • Farah A, de Paulis T, Trugo LC, Martin PR (2005) Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem 53:1505–1513

    Article  CAS  Google Scholar 

  • Fernandes SC, Moccelini SK, Scheeren CW, Migowski P et al (2009) Biosensor for chlorogenic acid based on an ionic liquid containing iridium nanoparticles and polyphenol oxidase. Talanta 79:222–228

    Article  CAS  Google Scholar 

  • Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46:101–123

    Article  CAS  Google Scholar 

  • Jaiswal R, Kuhnert N (2010) Hierarchical scheme for liquid chromatography/multi-stage spectrometric identification of 3,4,5-triacyl chlorogenic acids in green Robusta coffee beans. Rapid Commun Mass Spectrom 24:2283–2294

    Article  CAS  Google Scholar 

  • Kuhnert N, Karaköse H, Jaiswal R (2012) Analysis of chlorogenic acids and other hydroxycinnamates in food, plants, and pharmacokinetic studies. In: Nollet LML, Toldra F (eds) Handbook of analysis of active compounds in functional foods. CRC Press, Taylor & Francis Group, Boca Raton, pp 461–510

    Chapter  Google Scholar 

  • Ma X, Yang H, Xiong H et al (2016) Electrochemical behaviour and determination of chlorogenic acid based on multi-walled carbon nanotubes modified screen-printed electrode. Sensors 16:1797–1806

    Article  Google Scholar 

  • Manaia MAN, Diculescu VC, de Souza GE, Oliveira-Brett AM (2012) Quaicolic spices curcumin and capsaicin electrochemical oxidation behaviour at a glassy carbon electrode. J Electroanal Chem 682:83–89

    Article  CAS  Google Scholar 

  • Mills CE, Oruna-Concha MJ, Mottram DS et al (2013) The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem 141:3335–3340

    Article  CAS  Google Scholar 

  • Mishra S, Tandon P, Eravuchira PJ et al (2013) Vibrational spectroscopy and density functional theory analysis of 3-O-caffeoylquinic acid. Spectrochim Acta A 104:358–367

    Article  CAS  Google Scholar 

  • Moccelini SK, Spinelli A, Viera IC (2008) Biosensors based on bean sprout homogenate immobilized in chitosan microspheres and silica for determination of chlorogenic acid. Enzym Microb Technol 43:381–387

    Article  CAS  Google Scholar 

  • Molina A, Gonzalez J (2003) Cyclic reciprocal derivative chronopotentiometry with power time currents applied to electrodes coated with electroactive molecular films. Influence of the reversibility. Langmuir 119:406–415

    Article  Google Scholar 

  • Molina A, Gonzalez J, Abenza N (2006) Application of chronopotentiometry and derivate chronopotentiometry with an alternating current to the study of a slow charge transfer in a surface confined redox system. Electrochim Acta 51:4358–4366

    Article  CAS  Google Scholar 

  • Monteiro MC, Farah A (2012) Chlorogenic acids in Brazilian Coffea arabica cultivars from various consecutive crops. Food Chem 134:611–614

    Article  CAS  Google Scholar 

  • Oliveira-Neto JR, Garcia Rezende S, de Fatima RC et al (2016) Electrochemical behaviour and determination of major phenolic antioxidants in selected coffee samples. Food Chem 190:506–512

    Article  CAS  Google Scholar 

  • Preedy VR (ed) (2015) Coffee in health and disease prevention. Academic Press & Elsevier, London

    Google Scholar 

  • Santos WJR, Santhiago M, Yoshida IVP, Kubota LT (2011) Novel electrochemical sensor for the selective recognition of chlorogenic acid. Anal Chim Acta 695:44–50

    Article  CAS  Google Scholar 

  • Šeruga M, Tomac I (2014) Electrochemical behaviour of some chlorogenic acids and their characterization in coffee by square-wave voltammetry. Int J Electrochem Sci 9:6134–6154

    Google Scholar 

  • Shrivastava A, Gupta VP (2011) Methods for the determination of limit of detection and limit of quantification of the analytical methods. Chron Young Sci 2:21–25

    Article  Google Scholar 

  • Simić A, Manojlović D, Šegan D, Todorović M (2007) Electrochemical behaviour and antioxidant and prooxidant activity of natural phenolics. Molecules 12:2327–2340

    Article  Google Scholar 

  • Teixeira J, Gaspar A et al (2013) Hydroxycinnamic acid antioxidants: an electrochemical overview. Biomed Res Int. doi:10.1155/2013/251754

  • Tomac I, Šeruga M (2016) Electrochemical properties of chlorogenic acids and determination of their content in coffee using differential pulse voltammetry. Int J Electrochem Sci 11:2854–2876

    Article  CAS  Google Scholar 

  • Vasilescu I, Eremia SAV, Penu R, Albu C et al (2015) Disposable dual sensor array for simultaneous determination of chlorogenic acid and caffeine from coffee. RSC Adv 5:261–268

    Article  CAS  Google Scholar 

  • Yang B, Kotani A, Arai K, Kusu F (2001) Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Anal Sci 17:599–604

    Article  CAS  Google Scholar 

  • Yardim Y (2012) Electrochemical behaviour of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak. J Food Sci 77:C408–C413

    Article  CAS  Google Scholar 

  • Yardim Y, Keskin E, Şentürk Z (2013) Voltammetric determination of mixtures of caffeine and chlorogenic acid in beverage samples using a boron-doped diamond electrode. Talanta 116:1010–1017

    Article  CAS  Google Scholar 

  • Ziyatdinova G, Aytuganova I, Nizamova A, Budnikov H (2013) Differential pulse voltammetric assay of coffee antioxidant capacity with MWNT-modified electrode. Food Anal Methods 6:1629–1638

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Irena Dokli and Dr. Zdenko Hameršak, from the Ruđer Bošković Institute, Zagreb, Croatia for kindly providing the samples of FQAs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Tomac.

Ethics declarations

Conflict of Interest

Ivana Tomac declares that she has no conflict of interest. Marijan Šeruga declares that he has no conflict of interest. Ernest Beinrohr declares that he has no conflict of interest.

Human and Animal Rights

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomac, I., Šeruga, M. & Beinrohr, E. Characterization of Chlorogenic Acids in Coffee by Flow-Through Chronopotentiometry. Food Anal. Methods 10, 3924–3933 (2017). https://doi.org/10.1007/s12161-017-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0962-7

Keywords

Navigation