Skip to main content

Advertisement

Log in

Enzymatic Hydrolysis Applied to Banana Pseudostem Biomass Compared to Solubilized Xylan for Xylooligosaccharides Production with High Substrate Concentration

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract 

Xylan is a polysaccharide present in lignocellulosic biomass, which is obtained in large quantities as agricultural and agroindustrial waste. In this study, xylooligosaccharides (XOS) were produced by the enzymatic hydrolysis of xylan, using biomass itself or solubilized xylan as substrate. In addition, enzymatic hydrolysis of solubilized xylan was performed with two cycles in a higher volume and higher substrate concentrations. XOS and xylan molecular weight were evaluated. After partial delignification, the hemicellulose in the material increased by 6 percentual points due to the lignin removal. Milling and partial delignification of biomass helped to improve the enzymatic hydrolysis since conversion went up by 47.13% after the use of both strategies together. Regarding the solubilized xylan enzymatic hydrolysis, the increase of substrate concentration led to a decrease in the yield of around 13%; however, the amount of XOS produced went from 14.68 g/L to 50.40 g/L. The hydrolysis 2nd cycle led to an increase of only around 10% conversion for all substrate concentrations. After hydrolysis, the molecular weight of the xylan decreased, as did the polydispersity. However, after the second hydrolysis cycle, both the molecular weight and polydispersity increased, since probably the enzyme acted in the easing xylan fraction and the remaining complex substrate limited enzyme action. Comparatively, the enzymatic hydrolysis of solubilized xylan resulted in a higher yield and concentration than enzymatic hydrolysis of the partial delignified biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Naidu DS, Hlangothi SP, John MJ (2018) Bio-based products from xylan: a review. Carbohyd Polym 179:28–41. https://doi.org/10.1016/j.carbpol.2017.09.064

    Article  CAS  Google Scholar 

  2. Deutschmann R, Dekker RFH (2012) From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol Adv 30:1627–1640. https://doi.org/10.1016/j.biotechadv.2012.07.001

    Article  CAS  PubMed  Google Scholar 

  3. Scapini T, dos Santos MSN, Bonatto C et al (2021) Hydrothermal pretreatment of lignocellulosic biomass for hemicellulose recovery. Biores Technol 342:126033. https://doi.org/10.1016/J.BIORTECH.2021.126033

    Article  CAS  Google Scholar 

  4. Qaseem MF, Shaheen H, Wu AM (2021) Cell wall hemicellulose for sustainable industrial utilization. Renew Sustain Energy Rev 144:110996. https://doi.org/10.1016/J.RSER.2021.110996

    Article  CAS  Google Scholar 

  5. Poletto P, Pereira GN, Monteiro CRM et al (2020) Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem 91:352–363. https://doi.org/10.1016/j.procbio.2020.01.005

  6. Gullón P, Gullón B, González-Munñoz MJ et al (2014) Production and bioactivity of oligosaccharides from biomass hemicelluloses. Food Oligosaccharides: Prod Anal Bioactivity 9781118426:88–106. https://doi.org/10.1002/9781118817360.ch6

    Article  Google Scholar 

  7. Napoleão GM, Rodrigues De Jesus PR, Leonel S (2021) Cultivar diversification of banana production in Brazil. Agron Sci Biotechnol 7:1–14. https://doi.org/10.33158/ASB.R127.V7.2021

    Article  Google Scholar 

  8. Sawarkar AN, Kirti N, Tagade A, Tekade SP (2022) Bioethanol from various types of banana waste: a review. Biores Technol Rep 18:101092. https://doi.org/10.1016/J.BITEB.2022.101092

    Article  CAS  Google Scholar 

  9. Gupta G, Baranwal M, Saxena S, Reddy MS (2022) Utilization of banana waste as a resource material for biofuels and other value-added products. Biomass Convers Biorefinery 1:1–20. https://doi.org/10.1007/S13399-022-02306-6/TABLES/7

    Article  Google Scholar 

  10. FAOSTAT (2020) Crops and livestock products. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat/en/#data/QCL/visualize. Acessed 10 Aug 2022.

  11. Fernandes ERK, Marangoni C, Souza O, Sellin N (2013) Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag 75:603–608. https://doi.org/10.1016/J.ENCONMAN.2013.08.008

    Article  CAS  Google Scholar 

  12. Reddy Marella JB, Madireddy S, Maripi AN (2014) Production of pulp from banana pseudo stem for grease proof paper. Int J Eng Res Gen Sci 2. http://ijergs.org.managewebsiteportal.com/files/documents/Production-of-Pulp-6.pdf

  13. Ingale S, Joshi SJ, Gupte A (2014) Production of bioethanol using agricultural waste: banana pseudo stem. Braz J Microbiol 45:885–892. https://doi.org/10.1590/S1517-83822014000300018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tambuwal AD, Okoh EVC, Ogbiko C (2020) Biogas production from banana and plantain peels blended with cow dung in an in vitro biodigester system. Lapai J Appl Natural Sci 160–164

  15. Jamal P, K. Saheed O, Alam Z, (2011) Bio-valorization potential of banana peels (Musa sapientum): an overview. Asian J Biotechnol 4:1–14. https://doi.org/10.3923/AJBKR.2012.1.14

    Article  Google Scholar 

  16. Ahmad T, Danish M (2018) Prospects of banana waste utilization in wastewater treatment: a review. J Environ Manage 206:330–348. https://doi.org/10.1016/J.JENVMAN.2017.10.061

    Article  CAS  PubMed  Google Scholar 

  17. Brienzo M, Carvalho AFAC, Figueiredo FC, Neto P de O (2016) Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. In: Riley GL (ed) Food waste: practices, management and challenges. Nova Science Publishers, pp 155–188

  18. Selvarajan E, Veena R (2017) Recent advances and future perspectives of thermostable xylanase. Biomed Pharmacol J10:261–279. https://doi.org/10.13005/bpj/1106

  19. Zhou M, Tian X (2022) Development of different pretreatments and related technologies for efficient biomass conversion of lignocellulose. Int J Biol Macromol 202:256–268

    Article  CAS  PubMed  Google Scholar 

  20. Freitas C, Terrone CC, Forsan CF, et al (2022) Oligosaccharides from lignocellulosic biomass and their biological and physicochemical properties. In: Brienzo M (ed) Hemicellulose biorefinery: a sustainable solution for value addition to bio-based products and bioenergy, 1st ed. pp 275–309

  21. Nordberg Karlsson E, Schmitz E, Linares-Pastén JA, Adlercreutz P (2018) Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl Microbiol Biotechnol 102:9081–9088. https://doi.org/10.1007/s00253-018-9343-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freitas C, Carmona E, Brienzo M (2019) Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact Carbohydr Diet Fibre 18:100184. https://doi.org/10.1016/j.bcdf.2019.100184

    Article  CAS  Google Scholar 

  23. Zerva A, Pentari C, Ferousi C et al (2021) Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. Biores Technol 342:126058

    Article  CAS  Google Scholar 

  24. Zamora Zamora HD, de Freitas C, Bueno D et al (2021) Biomass fractionation based on enzymatic hydrolysis for biorefinery systems. Biorefineries: a step towards renewable and clean energy. Springer, Singapore, pp 217–254

    Google Scholar 

  25. Freitas C, Terrone CC, Masarin F et al (2021) In vitro study of the effect of xylooligosaccharides obtained from banana pseudostem xylan by enzymatic hydrolysis on probiotic bacteria. Biocatal Agric Biotechnol 33:6. https://doi.org/10.1016/j.bcab.2021.101973

    Article  CAS  Google Scholar 

  26. Santibáñez L, Henríquez C, Corro-Tejeda R et al (2021) Xylooligosaccharides from lignocellulosic biomass: a comprehensive review. Carbohyd Polym 251:117118

    Article  Google Scholar 

  27. Kumar V, Bahuguna A, Ramalingam S, Kim M (2021) Developing a sustainable bioprocess for the cleaner production of xylooligosaccharides: an approach towards lignocellulosic waste management. J Clean Prod 316:128332

    Article  CAS  Google Scholar 

  28. Mano MCR, Neri-Numa IA, da Silva JB et al (2017) Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol 102:1(102):17–37. https://doi.org/10.1007/S00253-017-8564-2

    Article  Google Scholar 

  29. Palaniappan A, Antony U, Emmambux MN (2021) Current status of xylooligosaccharides: production, characterization, health benefits and food application. Trends Food Sci Technol 111:506–519

    Article  CAS  Google Scholar 

  30. Koh A, de Vadder F, Kovatcheva-Datchary P, Bäckhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165:1332–1345. https://doi.org/10.1016/J.CELL.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  31. Brienzo M, Siqueira AF, Milagres AMF (2009) Search for optimum conditions of sugarcane bagasse hemicellulose extraction. Biochem Eng J 46:199–204. https://doi.org/10.1016/j.bej.2009.05.012

    Article  CAS  Google Scholar 

  32. Martins RP, Schmatz AA, de Freita LA et al (2021) Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Ind Crops Prod 170:113813. https://doi.org/10.1016/j.indcrop.2021.113813

    Article  CAS  Google Scholar 

  33. Díaz S, Ortega Z, Benítez AN et al (2021) Assessment of the effect of autohydrolysis treatment in banana’s pseudostem pulp. J Waste Manag 119:306–314. https://doi.org/10.1016/J.WASMAN.2020.09.034

    Article  Google Scholar 

  34. Shimizu FL, Monteiro PQ, Ghiraldi PHC et al (2018) Acid, alkali and peroxide pretreatments increase the cellulose accessibility and glucose yield of banana pseudostem. Ind Crops Prod 115:62–68. https://doi.org/10.1016/J.INDCROP.2018.02.024

    Article  CAS  Google Scholar 

  35. Baruah J, Bardhan P, Mukherjee AK et al (2022) Integrated pretreatment of banana agrowastes: structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle. Int J Biol Macromol 201:298–307. https://doi.org/10.1016/J.IJBIOMAC.2021.12.179

    Article  CAS  PubMed  Google Scholar 

  36. Zhao C, Shao Q, Ma Z et al (2016) Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind Crops Prod 83:86–93. https://doi.org/10.1016/J.INDCROP.2015.12.018

    Article  CAS  Google Scholar 

  37. Pereira BS, de Freitas C, Contiero J, Brienzo · Michel, (2021) Enzymatic production of xylooligosaccharides from xylan solubilized from food and agroindustrial waste. BioEnergy Res 1:3. https://doi.org/10.1007/s12155-021-10373-2

    Article  CAS  Google Scholar 

  38. Melati RB, Shimizu FL, Oliveira G et al (2019) Key factors affecting the recalcitrance and conversion process of biomass. Bioenergy Res 12:1–20. https://doi.org/10.1007/s12155-018-9941-0

    Article  CAS  Google Scholar 

  39. Shimizu FL, de Azevedo GO, Coelho LF et al (2020) Minimum lignin and xylan removal to improve cellulose accessibility. Bioenergy Res 13:775–785. https://doi.org/10.1007/s12155-020-10120-z

    Article  CAS  Google Scholar 

  40. Hu J, Arantes V, Saddler JN (2011) The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect? Biotechnol Biofuels 4:36. https://doi.org/10.1186/1754-6834-4-36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang C, Zhao C, Li H et al (2018) Comparison of different pretreatments on the synergistic effect of cellulase and xylanase during the enzymatic hydrolysis of sugarcane bagasse. RSC Adv 8:30725–30731. https://doi.org/10.1039/C8RA05047C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sant’ A, da Silva A, Pereira Espinheira R, et al (2020) Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnol Biofuels 13:58. https://doi.org/10.1186/s13068-020-01697-w

    Article  CAS  Google Scholar 

  43. Jacobs A, Dahlman O (2001) Characterization of the molar masses of hemicelluloses from wood and pulps employing size exclusion chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. https://doi.org/10.1021/bm010050b

  44. Xie Y, Guo X, Ma Z, et al (2020) Efficient extraction and structural characterization of hemicellulose from sugarcane bagasse pith. Polymers 2020, Vol 12, Page 608 12:608. https://doi.org/10.3390/POLYM12030608

  45. Kale MS, Yadav MP, Chau HK, Hotchkiss AT (2018) Molecular and functional properties of a xylanase hydrolysate of corn bran arabinoxylan. Carbohydr Polym 181:119–123. https://doi.org/10.1016/J.CARBPOL.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Moreira LRS, Filho EXF (2016) Insights into the mechanism of enzymatic hydrolysis of xylan. Appl Microbiol Biotechnol 100:5205–5214. https://doi.org/10.1007/s00253-016-7555-z

    Article  CAS  PubMed  Google Scholar 

  47. Zhang W, Johnson AM, Barone JR, Renneckar S (2016) Reducing the heterogeneity of xylan through processing. Carbohydr Polym 150:250–258. https://doi.org/10.1016/j.carbpol.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  48. Carlsson J (2022) Solubility of wood xylans effect of pH and concentration. Dissertation, School of Engineering Sciences in Chemestry, Biotechnology and Health, Sweden. https://kth.diva-portal.org/smash/get/diva2:1662092/FULLTEXT01.pdf

  49. Wallace J, Brienzo M, García-Aparicio MP, Görgens JF (2016) Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse. New Biotechnol 33:361–371. https://doi.org/10.1016/j.nbt.2016.01.004

    Article  CAS  Google Scholar 

  50. Kong F, Guo Y, Liu Z et al (2018) Synthesis of cationic xylan derivatives and application as strengthening agents in papermaking. BioRes 13:2960–2976. https://doi.org/10.15376/biores.13.2.2960-2976

    Article  CAS  Google Scholar 

  51. Vena PF, García-Aparicio MP, Brienzo M et al (2013) Effect of alkaline hemicellulose extraction on kraft pulp fibers from Eucalyptus grandis. J Wood Chem Technol 33:157–173. https://doi.org/10.1080/02773813.2013.773040

    Article  CAS  Google Scholar 

Download references

Funding

This research received the support of the São Paulo Research Foundation (FAPESP, process 2019/12997–6 and 2017/22401–8), National Council for Scientific and Technological Development (CNPq process 303239/2021–2), and the Coordination of Superior Level Staff Improvement (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Brienzo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, C., Brienzo, M. Enzymatic Hydrolysis Applied to Banana Pseudostem Biomass Compared to Solubilized Xylan for Xylooligosaccharides Production with High Substrate Concentration. Bioenerg. Res. 16, 1040–1050 (2023). https://doi.org/10.1007/s12155-022-10508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10508-z

Keywords

Navigation