Skip to main content
Log in

Evaluation of the Effect of the Application of Combined Pretreatments and Inoculum with High Alkalinity on Food Residues Through BMP Tests

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The management and control of food waste is currently seen as a growing concern; anaerobic digestion is a promising alternative for the valorization of food waste. This study evaluates the effect of the application of three pretreatments (grinding, pH control, thermal treatment) and organic load control, employing a high alkalinity inoculum for methane production through BMP tests, using a Taguchi L8 experimental design of 4 factors and 2 levels, resulting in the best performance (65.91 NmL \(\cdot\) g\(^{-1}\) TVS) with pretreatment conditions of grinding with fine particle size, pH 11, thermal pretreatment at 60 \(^{\circ }\)C and a concentration of 14 g TVS \(\cdot\) L\(^{-1}\), which represents an improvement of 34.66% in comparison with the food waste without pretreatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tyagi VK, Fdez-Güelfo LA, Zhou Y, Álvarez-Gallego CJ, Garcia LIR, Ng WJ (2018) Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renew Sustain Energy Rev 93:380–399. https://doi.org/10.1016/j.rser.2018.05.051

    Article  Google Scholar 

  2. Zhang XB, Xu J (2018) Optimal policies for climate change: A joint consideration of CO2 and methane. Appl Energy 211:1021–1029. https://doi.org/10.1016/j.apenergy.2017.10.067

    Article  CAS  Google Scholar 

  3. Saunois M, Jackson RB, Bousquet P, Poulter B, Canadell JG (2016) The growing role of methane in anthropogenic climate change. Environ Res Lett 11. https://doi.org/10.1088/1748-9326/11/12/120207

  4. Belgiorno V, Panza D, Russo L, Amodio V, Cesaro A (2011) Alternative stabilisation options of mechanically sorted organic fraction from municipal solid waste prior to landfill disposal. Int J Environ Eng 3:318. https://doi.org/10.1504/ijee.2011.041356

    Article  Google Scholar 

  5. United Nations Environment Programme (2021) Food Waste Index Report 2021

  6. Maina S, Kachrimanidou V, Koutinas A (2017) A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr Opin Green Sustain Chem 8:18–23. https://doi.org/10.1016/j.cogsc.2017.07.007

    Article  Google Scholar 

  7. Dahiya S, Kumar AN, Shanthi SJ, Chatterjee S, Sarkar O, Mohan SV (2018) Food waste biorefinery: Sustainable strategy for circular bioeconomy. Bioresour Technol 248:2–12. https://doi.org/10.1016/j.biortech.2017.07.176

    Article  CAS  PubMed  Google Scholar 

  8. Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P (2018) Anaerobic bioconversion of food waste into energy: A critical review. Bioresour Technol 248:37–56. https://doi.org/10.1016/j.biortech.2017.06.145

    Article  CAS  PubMed  Google Scholar 

  9. Bayard R, Liu X, Benbelkacem H, Buffiere P, Gourdon R (2016) Can biomethane potential (BMP) be predicted from other variables such as biochemical composition in lignocellulosic biomass and related organic residues? Bioenergy Res 9:610–623. https://doi.org/10.1007/s12155-015-9701-3

    Article  CAS  Google Scholar 

  10. Li L, Peng X, Wang X, Wu D (2018) Anaerobic digestion of food waste: A review focusing on process stability. Bioresour Technol 248:20–28. https://doi.org/10.1016/j.biortech.2017.07.012

    Article  CAS  PubMed  Google Scholar 

  11. Parthiba Karthikeyan O, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H (2018) Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresour Technol 249:1025–1039. https://doi.org/10.1016/j.biortech.2017.09.105

    Article  CAS  PubMed  Google Scholar 

  12. Khor WC, Rabaey K, Vervaeren H (2015) Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass. Bioresour Technol 176:181–188. https://doi.org/10.1016/j.biortech.2014.11.037

    Article  CAS  PubMed  Google Scholar 

  13. Civelek YH, Korkmaz E, Manav DN, Ozkaya B, Demir A (2018) The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins. J MaterCycles Waste Manag 20:800–809. https://doi.org/10.1007/s10163-017-0641-1

    Article  CAS  Google Scholar 

  14. Cesaro A, Belgiorno V (2014) Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem Eng J 240:24–37. https://doi.org/10.1016/j.cej.2013.11.055

    Article  CAS  Google Scholar 

  15. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156. https://doi.org/10.1016/j.apenergy.2014.02.035

    Article  CAS  Google Scholar 

  16. Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: Fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  17. Latif MA, Ahmad A, Ghufran R, Wahid ZA (2012) Effect of temperature and organic loading rate on upflow anaerobic sludge blanket reactor and CH4 production by treating liquidized food waste. Environ Prog Sustain Energy 31:114–121. https://doi.org/10.1002/ep.10540

    Article  CAS  Google Scholar 

  18. Xu F, Li Y, Ge X, Yang L, Li Y (2018) Anaerobic digestion of food waste - Challenges and opportunities. Bioresour Technol 247:1047–1058. https://doi.org/10.1016/j.biortech.2017.09.020

    Article  CAS  PubMed  Google Scholar 

  19. Mirmohamadsadeghi S, Karimi K, Tabatabaei M, Aghbashlo M (2019) Biogas production from food wastes: A review on recent developments and future perspectives. Bioresour Technol Reports 7:100202. https://doi.org/10.1016/j.biteb.2019.100202

    Article  Google Scholar 

  20. Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review. J Environ Chem Eng 2:1821–1830. https://doi.org/10.1016/j.jece.2014.07.024

    Article  CAS  Google Scholar 

  21. Parra-Orobio BA, Donoso-Bravo A, Torres-Lozada P (2021) Pre-dimensioning of Small-Scale Anaerobic Reactors of Food Waste Through Biochemical Methane Potential Assays and Kinetic Models. Bioenergy Res. https://doi.org/10.1007/s12155-021-10291-3

  22. Parra-Orobio BA, Donoso-Bravo A, Ruiz-Sánchez JC, Valencia-Molina KJ, Torres-Lozada P (2018) Effect of inoculum on the anaerobic digestion of food waste accounting for the concentration of trace elements. Waste Manag. 71:342–349. https://doi.org/10.1016/j.wasman.2017.09.040

    Article  CAS  PubMed  Google Scholar 

  23. Peu P, Brugère H, Pourcher AM, Kérourédan M, Godon JJ, Delgenès JP, Dabert P (2006) Dynamics of a pig slurry microbial community during anaerobic storage and management. Appl Environ Microbiol 72:3578–3585. https://doi.org/10.1128/AEM.72.5.3578-3585.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cabbai V, Ballico M, Aneggi E, Goi D (2013) BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Manag 33:1626–1632. https://doi.org/10.1016/j.wasman.2013.03.020

    Article  CAS  PubMed  Google Scholar 

  25. Filer J, Ding HH, Chang S (2019) Biochemical Methane Potential (BMP) Assay Method for Anaerobic Digestion Research, Water.  11. https://doi.org/10.3390/w11050921

  26. American Public Health Association (1998) American Water Works Association, Water Environment Federation, Standar Methods for the examination of water and wastewater, Stand. Methods Exam. Water Waste Water 20th Ed. 3-104. https://www.standardmethods.org/

  27. Li D, Ran Y, Chen L, Cao Q, Li Z, Liu X (2018) Instability diagnosis and syntrophic acetate oxidation during thermophilic digestion of vegetable waste. Water Res 139:263–271. https://doi.org/10.1016/j.watres.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  28. Da Silva C, Astals S, Peces M, Campos JL, Guerrero L (2018) Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation. Waste Manag 71:19–24. https://doi.org/10.1016/j.wasman.2017.10.009

    Article  CAS  PubMed  Google Scholar 

  29. Texier AC, Gomez J (2004) Settleability and kinetics of a nitrifying sludge in a sequencing batch reactor. Can J Microbiol 50:943–949. https://doi.org/10.1139/w04-078

    Article  CAS  PubMed  Google Scholar 

  30. De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper DH, Verstraete W, Boon N (2015) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199. https://doi.org/10.1007/s00253-014-6046-3

    Article  CAS  PubMed  Google Scholar 

  31. Fisgativa H, Tremier A, Dabert P (2016) Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manag 50:264–274. https://doi.org/10.1016/j.wasman.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  32. Hussain A, Kumar P, Mehrotra I (2015) Nitrogen and phosphorus requirement in anaerobic process: A review. Environ Eng Manag 14:769–780. https://doi.org/10.30638/eemj.2015.086

    Article  Google Scholar 

  33. Tchobanoglous G, Burton FL, Stensel HD (2003) Waste water engineering treatment and reuse, 4th edn. Metcalf Eddy, Inc, Ta

  34. Marín-Peña O, Alvarado-Lassman A, Vallejo-Cantú NA, Juárez-Barojas I, Rodríguez-Jarquín JP, Martínez-Sibaja A (2020) Electrical conductivity for monitoring the expansion of the support material in an anaerobic biofilm reactor, Processes, 8. https://doi.org/10.3390/pr8010077

  35. Proulx CL, Kilgour BW, Francis AP, Bouwhuis RF, Hill JR (2018) Using a conductivity-alkalinity relationship as a tool to identify surface waters in reference condition across Canada. Water Qual Res J Canada 53:231–240. https://doi.org/10.2166/wqrj.2018.030

    Article  CAS  Google Scholar 

  36. Zhao J, Liu Y, Wang D, Chen F, Li X, Zeng G, Yang Q (2017) Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag 67:308–314. https://doi.org/10.1016/j.wasman.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  37. De Vrieze J, Christiaens MER, Walraedt D, Devooght A, Ijaz UZ, Boon N (2017) Microbial community redundancy in anaerobic digestion drives process recovery after salinity exposure. Water Res 111:109–117. https://doi.org/10.1016/j.watres.2016.12.042

    Article  CAS  PubMed  Google Scholar 

  38. Jiang J, He S, Kang X, Sun Y, Yuan Z, Xing T, Guo Y, Li L (2020) Effect of organic loading rate and temperature on the anaerobic digestion of municipal solid waste: process performance and energy recovery. Front Energy Res 8:1–10. https://doi.org/10.3389/fenrg.2020.00089

    Article  CAS  Google Scholar 

  39. Park J, Shin W, Shi W, Jun H (2019) Changes of bacterial communities in an anaerobic digestion and a bio-electrochemical anaerobic. Energies. https://doi.org/10.3390/en12152958

    Article  Google Scholar 

  40. Abdeen FRH, Mel M, Jami MS, Ihsan SI, Ismail AF (2016) A review of chemical absorption of carbon dioxide for biogas upgrading, Chinese. J Chem Eng 24:693–702. https://doi.org/10.1016/j.cjche.2016.05.006

    Article  CAS  Google Scholar 

  41. Campuzano-Calderón O (2017) Estudio de la remoción de sulfuro de hidrógeno y de dióxido de carbono presente en el biogás, por medio de un reactor de columna de burbujeo operado a baja presiõn

  42. Sebola M, Tesfagiorgis H, Muzenda E (2015) Effect of particle size on anaerobic digestion of different feedstocks, South African. J Chem Eng 20:11–26

    Google Scholar 

  43. Naran E, Toor UA, Kim DJ (2016) Effect of pretreatment and anaerobic co-digestion of food waste and waste activated sludge on stabilization and methane production. Int Biodeterior Biodegrad 113:17–21. https://doi.org/10.1016/j.ibiod.2016.04.011

    Article  CAS  Google Scholar 

  44. Hussain A, Filiatrault M, Guiot SR (2017) Acidogenic digestion of food waste in a thermophilic leach bed reactor: Effect of pH and leachate recirculation rate on hydrolysis and volatile fatty acid production. Bioresour Technol 245:1–9. https://doi.org/10.1016/j.biortech.2017.08.130

    Article  CAS  PubMed  Google Scholar 

  45. Zhao J, Liu Y, Wang D, Chen F, Li X, Zeng G, Yang Q (2017) Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Management 67:308–314. https://doi.org/10.1016/j.wasman.2017.05.016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of Sandra Cecilia Cerda Flores for the language reappraisal.

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico), author Alanis-Silva Edgar Daniel has received scholarship (701706), and Chávez-Parga Ma. Del Carmen, and Cortés José Apolinar has received research support from Coordinación de la Investigación Científica de la Universidad Michoacana de San Nicolas de Hidalgo (CIC-UMSNH, México).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Edgar Daniel Alanis Silva, Ma. Del Carmen Chávez Parga and José Apolinar Cortés. The first draft of the manuscript was written by Edgar Daniel Alanis Silva and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cortés José Apolinar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Chávez-Parga Ma. Del Carmen and Cortés José Apolinar contributed equally to this work.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniel, AS.E., Del Carmen, CP.M. & Apolinar, C.J. Evaluation of the Effect of the Application of Combined Pretreatments and Inoculum with High Alkalinity on Food Residues Through BMP Tests. Bioenerg. Res. 16, 979–989 (2023). https://doi.org/10.1007/s12155-022-10499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10499-x

Keywords

Navigation