Skip to main content

Advertisement

Log in

Optimisation of Pretreatment Catalyst, Enzyme Cocktail and Solid Loading for Improved Ethanol Production from Sweet Sorghum Bagasse

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Sweet sorghum bagasse displays many characteristics rendering it a promising substrate for lignocellulosic ethanol production. In this study, the steam pretreatment catalyst, enzymatic hydrolysis and the substrate loading for the fermentation were investigated in order to maximise the production of ethanol from the feedstock. The results deemed water as a sufficient pretreatment catalyst since the SO2 impregnation of the biomass did not produce any significant beneficial effects on the yield of ethanol produced. The preferred pretreatment and enzymatic hydrolysis conditions were incorporated in a fed-batch simultaneous saccharification and fermentation (SSF) process using pressed-only (not washed) WIS at a final solid loading of 13% (w/w) that resulted in the targeted ethanol concentration of 39 g/L with a corresponding yield of 82% of the theoretical maximum. Yeast inhibition coupled with significant glucose accumulation was observed at higher solid loadings of 16% and 20%. Ultimately, the sweet sorghum bagasse could be integrated into existing ethanol production regimes to improve the global bioenergy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data is reported in the manuscript.

References

  1. Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production : a review. Energies 11:1–19. https://doi.org/10.3390/en11123366

    Article  CAS  Google Scholar 

  2. Masnadi MS, El-Houjeiri HM, Schunack D et al (2018) Global carbon intensity of crude oil production. Science 80(361):851–853. https://doi.org/10.1126/science.aar6859

    Article  Google Scholar 

  3. Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st- to 2nd-generation biofuel technologies: An overview of current industry and RD&D activities. International Energy Agency, Paris

  4. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production : a critical review. Renew Sustain Energy Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  5. Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472. https://doi.org/10.1016/j.renene.2018.03.006

    Article  Google Scholar 

  6. Brooks KP, Snowden-Swan LJ, Jones SB et al (2016) Low-carbon aviation fuel through the alcohol to jet pathway. Biofuels for Aviation. Elsevier Inc., Amsterdam, pp 109–150

    Chapter  Google Scholar 

  7. Geleynse S, Brandt K, Garcia-Perez M et al (2018) The alcohol-to-jet conversion pathway for drop-in biofuels: techno-economic evaluation. Chemsuschem 11:3728–3741. https://doi.org/10.1002/cssc.201801690

    Article  CAS  PubMed  Google Scholar 

  8. Engelberth AS, Clayton Wheeler M, Peter van Walsum G (2018) Techno-economic comparison of three scenarios for upgrading a hemicellulose-rich pre-pulping extract to mixed-alcohols. Biofuels, Bioprod Biorefining 12:1082–1094. https://doi.org/10.1002/bbb.1928

    Article  CAS  Google Scholar 

  9. Joelsson E, Erdei B, Galbe M, Wallberg O (2016) Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw. Biotechnol Biofuels 9:1–16. https://doi.org/10.1186/s13068-015-0423-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Almodares A, Hadi MR (2009) Production of bioethanol from sweet sorghum: a review. African J Agric Res 4:772–780

    Google Scholar 

  11. Yu J, Zhong J, Zhang X, Tan T (2010) Ethanol production from H2SO3-steam-pretreated fresh sweet sorghum stem by simultaneous saccharification and fermentation. Appl Biochem Biotechnol 160:401–409. https://doi.org/10.1007/s12010-008-8333-x

    Article  CAS  PubMed  Google Scholar 

  12. Dar RA, Dar EA, Kaur A, Phutela UG (2018) Sweet sorghum-a promising alternative feedstock for biofuel production. Renew Sustain Energy Rev 82:4070–4090. https://doi.org/10.1016/j.rser.2017.10.066

    Article  Google Scholar 

  13. Mathur S, Umakanth AV, Tonapi VA et al (2017) Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnol Biofuels 10:1–19. https://doi.org/10.1186/s13068-017-0834-9

    Article  CAS  Google Scholar 

  14. Ekefre DE, Mahapatra AK, Latimore M et al (2017) Evaluation of three cultivars of sweet sorghum as feedstocks for ethanol production in the Southeast United States. Heliyon 3:e00490. https://doi.org/10.1016/j.heliyon.2017.e00490

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mundia CW, Secchi S, Akamani K, Wang G (2019) A regional comparison of factors affecting global sorghum production : the case of North America, Asia and Africa’s Sahel. Sustainability 11:1–18. https://doi.org/10.3390/su11072135

    Article  Google Scholar 

  16. Kim I, Han JI (2012) Optimization of alkaline pretreatment conditions for enhancing glucose yield of rice straw by response surface methodology. Biomass Bioenerg 46:210–217. https://doi.org/10.1016/j.biombioe.2012.08.024

    Article  CAS  Google Scholar 

  17. Wang L, Luo Z, Shahbazi A (2013) Optimization of simultaneous saccharification and fermentation for the production of ethanol from sweet sorghum (Sorghum bicolor) bagasse using response surface methodology. Ind Crop Prod 42:280–291. https://doi.org/10.1016/j.indcrop.2012.06.005

    Article  CAS  Google Scholar 

  18. Ballesteros M, Oliva JM, Negro MJ et al (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848. https://doi.org/10.1016/j.procbio.2003.09.011

    Article  CAS  Google Scholar 

  19. Matsakas L, Christakopoulos P (2013) Fermentation of liquefacted hydrothermally pretreated sweet sorghum bagasse to ethanol at high-solids content. Bioresour Technol 127:202–208. https://doi.org/10.1016/j.biortech.2012.09.107

    Article  CAS  PubMed  Google Scholar 

  20. Zhang C, Wen H, Chen C et al (2019) Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk. Renew Energy 134:44–53. https://doi.org/10.1016/j.renene.2018.11.005

    Article  CAS  Google Scholar 

  21. Rohowsky B, Häßler T, Gladis A et al (2013) Feasibility of simultaneous saccharification and juice co-fermentation on hydrothermal pretreated sweet sorghum bagasse for ethanol production. Appl Energy 102:211–219. https://doi.org/10.1016/j.apenergy.2012.03.039

    Article  CAS  Google Scholar 

  22. Umagiliyage AL, Choudhary R, Liang Y et al (2015) Laboratory scale optimization of alkali pretreatment for improving enzymatic hydrolysis of sweet sorghum bagasse. Ind Crops Prod 74:977–986. https://doi.org/10.1016/j.indcrop.2015.05.044

    Article  CAS  Google Scholar 

  23. Yu M, Li J, Chang S et al (2016) Bioethanol production using the sodium hydroxide pretreated sweet sorghum bagasse without washing. Fuel 175:20–25. https://doi.org/10.1016/j.fuel.2016.02.012

    Article  CAS  Google Scholar 

  24. del Río PG, Gomes-Dias JS, Rocha CMR et al (2020) Recent trends on seaweed fractionation for liquid biofuels production. Bioresour Technol 299:1–15. https://doi.org/10.1016/j.biortech.2019.122613

    Article  CAS  Google Scholar 

  25. Yang J, Kim JE, Kim JK et al (2017) Evaluation of commercial cellulase preparations for the efficient hydrolysis of hydrothermally pretreated empty fruit bunches. BioResources 12:7834–7840

    Article  CAS  Google Scholar 

  26. Baruah J, Nath BK, Sharma R et al (2018) Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Front Energy Res 6:1–19. https://doi.org/10.3389/fenrg.2018.00141

    Article  Google Scholar 

  27. Oliva JM, Negro MJ, Manzanares P et al (2017) A sequential steam explosion and reactive extrusion pretreatment for lignocellulosic biomass conversion within a fermentation-based biorefinery perspective. Fermentation 3:1–15. https://doi.org/10.3390/fermentation3020015

    Article  CAS  Google Scholar 

  28. Ruiz HA, Conrad M, Sun SN et al (2020) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  29. Pengilly C, García-Aparicio MP, Diedericks D et al (2015) Enzymatic hydrolysis of steam-pretreated sweet sorghum bagasse by combinations of cellulase and endo-xylanase. Fuel 154:352–360. https://doi.org/10.1016/j.fuel.2015.03.072

    Article  CAS  Google Scholar 

  30. Cara C, Moya M, Ballesteros I et al (2007) Influence of solid loading on enzymatic hydrolysis of steam exploded or liquid hot water pretreated olive tree biomass. Process Biochem 42:1003–1009. https://doi.org/10.1016/j.procbio.2007.03.012

    Article  CAS  Google Scholar 

  31. Klein-marcuschamer D, Oleskowicz-popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    Article  CAS  Google Scholar 

  32. McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenerg 35:3094–3103. https://doi.org/10.1016/j.biombioe.2011.04.018

    Article  CAS  Google Scholar 

  33. Mcintosh PA (2013) Selection of preferred sweet sorghum cultivars and their pretreatment optimisation for bio-ethanol production. MSc Thesis, Stellenbosch University

  34. Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenerg 30:863–869. https://doi.org/10.1016/j.biombioe.2006.02.002

    Article  CAS  Google Scholar 

  35. Sipos B, Réczey J, Somorai Z et al (2009) Sweet sorghum as feedstock for ethanol production: enzymatic hydrolysis of steam-pretreated bagasse. Appl Biochem Biotechnol 153:151–162. https://doi.org/10.1007/s12010-008-8423-9

    Article  CAS  PubMed  Google Scholar 

  36. Sluiter A, Ruiz A, Scarlata C, Sluiter J, Templeton D (2008) Determination of extractives in biomass: laboratory analytical procedure (LAP), NREL/TP-510-42619

  37. Sluiter A, Hames B, Ruiz R et al (2008) Determination of ash in biomass: laboratory analytical procedure (LAP), NREL/TP-510-42622

  38. Sluiter A, Hames B, Ruiz R et al (2008) Determination of structural carbohydrates and lignin in Biomass: laboratory analytical procedure (LAP), NREL/TP-510-42618

  39. Resch M, Baker J, Decker S (2015) Low solids enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure/Technical Report NREL/TP-5100–63351. Prepared for National Renewable Energy Laboratory, Golden, CO

  40. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1111/j.1468-2389.1995.tb00038.x

    Article  CAS  Google Scholar 

  41. Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270. https://doi.org/10.1016/0168-1656(92)90074-J

    Article  CAS  Google Scholar 

  42. Hu Y, Zhu Z, Nielsen J, Siewers V (2018) Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metab Eng 45:51–58. https://doi.org/10.1016/j.ymben.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  43. Manzanares P, Ballesteros I, Negro MJ et al (2012) Biological conversion of forage sorghum biomass to ethanol by steam explosion pretreatment and simultaneous hydrolysis and fermentation at high solid content. Biomass Convers Biorefinery 2:123–132. https://doi.org/10.1007/s13399-012-0040-8

    Article  CAS  Google Scholar 

  44. Shen F, Hu J, Zhong Y et al (2012) Ethanol production from steam-pretreated sweet sorghum bagasse with high substrate consistency enzymatic hydrolysis. Biomass Bioenerg 41:157–164. https://doi.org/10.1016/j.biombioe.2012.02.022

    Article  CAS  Google Scholar 

  45. Olofsson K, Bertilsson M, Lidén G (2008) A short review on SSF - an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:1–14. https://doi.org/10.1186/1754-6834-1-7

    Article  CAS  Google Scholar 

  46. Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb Technol 28:835–844. https://doi.org/10.1016/S0141-0229(01)00342-8

    Article  CAS  PubMed  Google Scholar 

  47. Kahar P, Ida E, Otsuka H et al (2017) Challenges of non-flocculating Saccharomyces cerevisiae haploid strain against inhibitory chemical complex for ethanol production. Bioresour Technol 245:1436–1446. https://doi.org/10.1016/j.biortech.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  48. Wang S, Sun X, Yuan Q (2018) Strategies for enhancing microbial tolerance to inhibitors for biofuel production: a review. Bioresour Technol 258:302–309. https://doi.org/10.1016/j.biortech.2018.03.064

    Article  CAS  PubMed  Google Scholar 

  49. Keating JD, Panganiban C, Mansfiel SD (2006) Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206. https://doi.org/10.1002/bit

    Article  CAS  PubMed  Google Scholar 

  50. Mithra MG, Jeeva ML, Sajeev MS, Padmaja G (2018) Comparison of ethanol yield from pretreated lignocellulo- starch biomass under fed-batch SHF or SSF modes. Heliyon 4(10):1–31. https://doi.org/10.1016/j.heliyon.2018.e00885

    Article  Google Scholar 

  51. Pazitny A, Russ A, Bohacek S, Stankovska M (2020) Effect of steam explosion on enzymatic hydrolysis of various parts of poplar tree. Wood Res 65:579–590

    Article  Google Scholar 

  52. Mishra A, Ghosh S (2017) A perspective on current technologies used for bioethanol production from lignocellulosics. In: Advances in biofeedstocks and biofuels: production technologies for biofuels, II. Scrivener Publishing LLC, pp 25–66

  53. Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. Omi A J Integr Biol 15:647–653. https://doi.org/10.1089/omi.2011.0003

    Article  CAS  Google Scholar 

  54. Graves T, Narendranath NV, Dawson K, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33:469–474. https://doi.org/10.1007/s10295-006-0091-6

    Article  CAS  PubMed  Google Scholar 

  55. Graves T, Narendranath NV, Dawson K, Power R (2007) Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Appl Microbiol Biotechnol 73:1190–1196. https://doi.org/10.1007/s00253-006-0573-5

    Article  CAS  PubMed  Google Scholar 

  56. Jung YH, Kim KH (2017) Evaluation of the main inhibitors from lignocellulose pretreatment for enzymatic hydrolysis and yeast fermentation. BioResources 12:9348–9356

    CAS  Google Scholar 

  57. Balderas VE, Kevin H, Radhakrishnan C (2018) Inactivation of the transcription factor mig1 ( YGL035C ) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids : acetic, formic and levulinic acid. J Ind Microbiol Biotechnol 45:735–751. https://doi.org/10.1007/s10295-018-2053-1

    Article  CAS  Google Scholar 

  58. Dziekońska-Kubczak U, Patelski P, Balcerek M et al (2015) Effect of acetic acid concentration on ethanol productivity by Saccharomyces Cerevisiae. CER Comparative European Research 2015:156–158

    Google Scholar 

  59. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3

    Article  CAS  Google Scholar 

  60. Madhavan A, Tamalampudi S, Srivastava A et al (2009) Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol 82:1037–1047. https://doi.org/10.1007/s00253-008-1818-2

    Article  CAS  PubMed  Google Scholar 

  61. Moreno AD, Tomás-Pejó E, Ibarra D et al (2013) Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain : effect of laccase supplementation. Biotechnol Biofuels 6:1–10

    Article  Google Scholar 

  62. Vargas F, Domínguez E, Vila C et al (2015) Agricultural residue valorization using a hydrothermal process for second generation bioethanol and oligosaccharides production. Bioresour Technol 191:263–270. https://doi.org/10.1016/j.biortech.2015.05.035

    Article  CAS  PubMed  Google Scholar 

  63. Fernandes MC, Ferro MD, Paulino AFC et al (2015) Enzymatic saccharification and bioethanol production from Cynara cardunculus pretreated by steam explosion. Bioresour Technol 186:309–315. https://doi.org/10.1016/j.biortech.2015.03.037

    Article  CAS  PubMed  Google Scholar 

  64. McIntosh S, Palmer J, Zhang Z et al (2017) Simultaneous saccharification and fermentation of pretreated Eucalyptus grandis under high solids loading. Ind Biotechnol 13:131–140. https://doi.org/10.1089/ind.2016.0018

    Article  CAS  Google Scholar 

  65. Kossatz HL, Rose SH, Viljoen-bloom M, Van ZWH (2017) Production of ethanol from steam exploded triticale straw in a simultaneous saccharification and fermentation process. Process Biochem 53:10–16. https://doi.org/10.1016/j.procbio.2016.11.023

    Article  CAS  Google Scholar 

  66. Cassells B, Karhumaa K, Sànchez i Nogué V, Lidén G (2017) Hybrid SSF/SHF processing of SO2 pretreated wheat straw—tuning co-fermentation by yeast inoculum size and hydrolysis time. Appl Biochem Biotechnol 181:536–547. https://doi.org/10.1007/s12010-016-2229-y

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported financially by the Technology Innovation Agency of South Africa.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the formulation and conceptualisation of the research, experimental work, interpretation of data, writing and revision of the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Oscar K. K. Bedzo.

Ethics declarations

Ethics Approval

The paper follows ethical standards.

Consent to Participate

All authors from this work consent the participation in this work.

Consent for Publication

The authors authorise the paper publication in BioEnergy Research Journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Fed-batch SSF with 13% solid loading resulted in 39 g/L of ethanol.

• Higher solid loadings resulted in inhibitory acetic acid concentrations.

• SO2 impregnation for biomass pretreatment did not benefit ethanol production.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedzo, O.K.K., Dreyer, C.B., van Rensburg, E. et al. Optimisation of Pretreatment Catalyst, Enzyme Cocktail and Solid Loading for Improved Ethanol Production from Sweet Sorghum Bagasse . Bioenerg. Res. 15, 1083–1095 (2022). https://doi.org/10.1007/s12155-021-10298-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10298-w

Keywords

Navigation