Skip to main content

Advertisement

Log in

Microalgal Co-cultivation for Biofuel Production and Bioremediation: Current Status and Benefits

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae have been reported to exhibit mutualistic interactions with other microorganisms like bacteria, filamentous fungi, and yeast and help each other co-exist. The potential of microalgae to perform photosynthesis and accumulate lipids make them suitable candidates for lipid production. Biofuel production from various single oleaginous microorganisms is already in practice. However, the high cost of biomass harvesting, extraction of lipids, and contamination issues are significant challenges of biofuel bioprocess commercialization. Recent microalgal co-culture studies showed considerable potential for easy biomass harvesting and reduction in overall energy consumption cost. Therefore, microalgal co-culture could be an alternative to overcome these constraints and enhance biomass and lipid production. Additionally, the integration of the nutrient sequestration process from potential agro-industrial wastewater using microalgal co-culture can reduce the cost of the substrate requirement for cultivation as well as ecological load. The co-culture in wastewater has shown excellent total phosphate removal efficiencies by microalgae Chlorella sorokiniana and yeast Rhodotorula glutinis, nitrogen removal by microalgae C. sorokiniana with activated sludge, and ammonium-nitrogen removal by C. vulgaris and fungi Aspergillus sp. co-culture. This review summarized the current advances towards biofuel and its value-added production from various microalgae co-culture and compared it with monoculture fermentation. It also includes some critical challenges of co-culturing for the economically viable bioprocess development for biofuel production. Furthermore, techno-economic analysis and life-cycle assessment of co-culture technology were also discussed for biofuel production feasibility from microalgal co-culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMDI:

American Dye Manufacturing Institute

ASP:

Aquatic Species Program

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

DO:

Dissolved oxygen

DOC:

Dissolved organic carbon

DOE:

Department of Energy

DW:

Dry weight

EPSs:

Extracellular polymeric substances

FAMEs:

Fatty acid methyl esters

FFA:

Free fatty acids

HRAPs:

High rate algal ponds

NH4+-N:

Ammonium-nitrogen

NO3 -N:

Nitrate-nitrogen

PHAs:

Polyhydroxyalkanoic acids

PUFA:

Polyunsaturated fatty acids

RSM:

Response surface methodology

SCO:

Single cell oil

TAGs:

Triacylglycerides

TN:

Total nitrogen

TOC:

Total organic carbon

TP:

Total phosphate

TSS:

Total suspended solids

VFAs:

Volatile fatty acids

VSS:

Volatile suspended solids

References

  1. Zhu LD, Li ZH (2016) Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Res Int. https://doi.org/10.1155/2016/8792548

  2. Liu X (2020) Microbial Technology for the Sustainable Development of Energy and Environment. Biotechnol Rep. https://doi.org/10.1016/j.btre.2020.e00486

  3. International Energy Association (2019) Global energy demand rose by 2.3% in 2018, its fastest pace in the last decade. Available at: https://www.iea.org/newsroom/news/2019/march/global-energy-demand-rose-by-23-in-2018-its-fastest-pace-in-the-last-decade.html. Accessed 26 March 2019

  4. Ramakrishnan VM, Muthukumarasamy N, Balraju P, Pitchaiya S, Velauthapillai D, Pugazhendhi A (2020) Transformation of TiO2 nanoparticles to nanotubes by simple solvothermal route and its performance as dye-sensitized solar cell (DSSC) photoanode. Int J Hydrogen Energ 45:15441–15452

    Article  Google Scholar 

  5. Ahorsu R, Medina F, Constantí M (2018) Significance and challenges of biomass as a suitable feedstock for bioenergy and biochemical production: A review. Energies 11(12):3366

    Article  CAS  Google Scholar 

  6. Ho SH, Zhang C, Tao F, Zhang C, Chen WH (2020) Microalgal Torrefaction for Solid Biofuel Production. Trends Biotechnol 38(9):1023–1033. https://doi.org/10.1016/j.tibtech.2020.02.009

    Article  CAS  PubMed  Google Scholar 

  7. Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L (2020) An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms 8(3):434. https://doi.org/10.3390/microorganisms8030434

    Article  CAS  PubMed Central  Google Scholar 

  8. Behera BK, Varma A (2016) Microbial resources for sustainable energy. Springer, Berlin

    Google Scholar 

  9. Kumar A, Ogita S, Yau YY (2018) Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology. Springer, Berlin

    Google Scholar 

  10. Ganesana R, Manigandanb S, Samuelc MS, Shanmuganathand R, Brindhadevie K, Chie NTL, Duc AP (2020) A review on prospective production of biofuel from microalgae. Biotechnol Rep:e00509. https://doi.org/10.1016/j.btre.2020.e00509

  11. Mathimani T, Pugazhendhi A (2019) Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal Agric Biotechnol 17:326–330. https://doi.org/10.1016/j.bcab.2018.12.007

    Article  Google Scholar 

  12. Rakesh S, Karthikeyan S (2019) Co-cultivation of microalgae with oleaginous yeast for economical biofuel production. J Farm Sci 32(2):125–130. https://doi.org/10.13140/RG.2.2.10506.41928

    Article  Google Scholar 

  13. Lian J, Wijffels RH, Smidt H, Sipkema D (2018) The effect of the algal microbiome on industrial production of microalgae. Microb Biotechnol 11(5):806–818. https://doi.org/10.1111/2F1751-7915.13296

    Article  PubMed  PubMed Central  Google Scholar 

  14. Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17(1):36. https://doi.org/10.1186/s12934-018-0879-x

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pacheco AR, Segrè D (2019) A multidimensional perspective on microbial interactions. FEMS Microbiol Lett 366(11):fnz125. https://doi.org/10.1093/femsle/fnz125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Magdouli S, Brar SK, Blais JF (2016) Co-culture for lipid production: advances and challenges. Biomass Bioenerg 92:20–30. https://doi.org/10.1016/j.biombioe.2016.06.003

    Article  CAS  Google Scholar 

  17. Ghosh S, Chowdhury R, Bhattacharya P (2016) Mixed consortia in bioprocesses: role of microbial interactions. Appl Microbiol Biot 100(10):4283–4295. https://doi.org/10.1007/s00253-016-7448-1

    Article  CAS  Google Scholar 

  18. Yen HW, Chen PW, Chen LJ (2015) The synergistic effects for the co-cultivation of oleaginous yeast Rhodotorula glutinis and microalgae Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152. https://doi.org/10.1016/j.biortech.2014.09.113

    Article  CAS  PubMed  Google Scholar 

  19. Xu L, Cheng X, Wang Q (2018) Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum. Front Plant Sci 9:741. https://doi.org/10.3389/fpls.2018.00741

    Article  PubMed  PubMed Central  Google Scholar 

  20. Osman MEH, Abo-Shady AM, Elshobary ME, Ghafar MAE, Abomohra AEF (2020) Screening of seaweeds for sustainable biofuel recovery through sequential biodiesel and bioethanol production. Environ Sci Pollut Res 27:32481–32493. https://doi.org/10.1007/s11356-020-09534-1

    Article  CAS  Google Scholar 

  21. Younes S, Bracharz F, Awad D, Qoura F, Mehlmer N, Brueck T (2020) Microbial lipid production by oleaginous yeasts grown on Scenedesmus obtusiusculus microalgae biomass hydrolysate. Bioproc Biosyst Eng 43:1629–1638. https://doi.org/10.1007/s00449-020-02354-0

    Article  CAS  Google Scholar 

  22. Vasconcelos B, Teixeira JC, Dragone G, Teixeira JA (2019) Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of “green” applications. Appl Microbiol Biot 103:3651–3667. https://doi.org/10.1007/s00253-019-09742-x

    Article  CAS  Google Scholar 

  23. La A (2019) Process development for symbiotic culture of Saccharomyces cerevisiae and Chlorella vulgaris for in situ CO2 mitigation (Doctoral dissertation, Paris Saclay). University of Paris-Saclay, Saint-Aubin, France

    Google Scholar 

  24. Zamalloa C, Gultom SO, Rajendran A, Hu B (2017) Ionic effects on microalgae harvest via microalgae-fungi co-pelletization. Biocatal Agricu Biotechnol 9:145–155. https://doi.org/10.1016/j.bcab.2016.12.007

    Article  Google Scholar 

  25. Ahuja D, Tatsutani M (2009) Sustainable energy for developing countries. SAPI EN. S. Surveys and Perspectives Integrating Environment and Society 2(1) http://journals.openedition.org/sapiens/823

  26. Islam AK, Primandari SR, Yaakob Z (2018) Non-Edible Vegetable Oils as Renewable Resources for Biodiesel Production: South-East Asia Perspective. In Advances in Biofuels and Bioenergy. IntechOpen Ltd, London, U.K. https://doi.org/10.5772/intechopen.73304

    Book  Google Scholar 

  27. Srivastava RK (2019) Bio-Energy production by contribution of effective and suitable microbial system. Mater Sci Energ Technol 2(2):308–318. https://doi.org/10.1016/j.mset.2018.12.007

    Article  Google Scholar 

  28. Li-Beisson Y, Thelen JJ, Fedosejevs E, Harwood JL (2019) The lipid biochemistry of eukaryotic algae. Prog Lipid Res 74:31–68

    Article  CAS  Google Scholar 

  29. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11(11):4662–4697. https://doi.org/10.3390/md11114662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Turkkul B, Deliismail O, Seker E (2020) Ethyl esters biodiesel production from Spirulina sp. and Nannochloropsis oculata microalgal lipids over alumina-calcium oxide catalyst. Renew Energy 145:1014–1019. https://doi.org/10.1016/j.renene.2019.06.093

    Article  CAS  Google Scholar 

  31. Liu S, Abu Hajar HA, Riefler G, Stuart BJ (2018) Lipid Extraction from Spirulina sp. and Schizochytrium sp. Using Supercritical CO with Methanol. BioMed Res Int:2018. https://doi.org/10.1155/2018/2720763

  32. Dourou M, Aggeli D, Papanikolaou S, Aggelis G (2018) Critical steps in carbon metabolism affecting lipid accumulation and their regulation in oleaginous microorganisms. Appl Microbiol Biotechnol 102(6):2509-23. 23. https://doi.org/10.1007/s00253-018-8813-z

  33. Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109(4):346–350

    Article  CAS  Google Scholar 

  34. del Pilar S-SM, Sauceda-Carvajal D, Castro-Ochoa FY, Molina-Cárdenas CA (2020) The Use of Light Spectra to Improve the Growth and Lipid Content of Chlorella vulgaris for Biofuels Production. Bioenergy Res 3:1–2. https://doi.org/10.1007/s12155-019-10070-1

    Article  CAS  Google Scholar 

  35. Rayati M, Rajabi Islami H, Shamsaie Mehrgan M (2020) Light Intensity Improves Growth, Lipid Productivity, and Fatty Acid Profile of Chlorococcum oleofaciens (Chlorophyceae) for Biodiesel Production. Bioenergy Res 19:1–1. https://doi.org/10.1007/s12155-020-10144-5

    Article  CAS  Google Scholar 

  36. Sharma N, Fleurent G, Awwad F, Cheng M, Meddeb-Mouelhi F, Budge SM, Germain H, Desgagné-Penix I (2020) Red light variation an effective alternative to regulate biomass and lipid profiles in Phaeodactylum tricornutum. Appl Sci 10(7):2531. https://doi.org/10.3390/app10072531

    Article  CAS  Google Scholar 

  37. Patil V, Tran KQ, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195. https://doi.org/10.3390/ijms9071188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pal P, Chew KW, Yen HW, Lim JW, Lam MK, Show PL (2019) Cultivation of oily microalgae for the production of third-generation biofuels. Sustainability 11(19):5424. https://doi.org/10.3390/su11195424

    Article  CAS  Google Scholar 

  39. Andrade LM, Andrade CJ, Dias M, Nascimento CA, Mendes MA (2018) Chlorella and Spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process Technol 6(1):45–58. https://doi.org/10.15406/mojfpt.2018.06.00144

    Article  Google Scholar 

  40. Gao K, Orr V, Rehmann L (2016) Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction. Bioresour Technol 206:77–85. https://doi.org/10.1016/j.biortech.2016.01.036

    Article  CAS  PubMed  Google Scholar 

  41. Sarker PK, Kapuscinski AR, Bae AY, Donaldson E, Sitek AJ, Fitzgerald DS, Edelson OF (2018) Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS One 13(7):e0201315. https://doi.org/10.1371/journal.pone.0201315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tevatia R, Allen J, Rudrappa D, White D, Clemente TE, Cerutti H, Demirel Y, Blum P (2015) The taurine biosynthetic pathway of microalgae. Algal Res 9:21–26. https://doi.org/10.1016/j.algal.2015.02.012

    Article  Google Scholar 

  43. Lordan S, Ross RP, Stanton C (2011) Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9(6):1056–1100. https://doi.org/10.3390/md9061056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dourou M, Dritsas P, Baeshen MN, Elazzazy A, AL-Farga A, Aggelis G (2020) High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media. FEMS Microbiol Lett 367(12). https://doi.org/10.1093/femsle/fnaa081

  45. Dhanasekaran D, Sundaresan M, Suresh A, Thajuddin N, Thangaraj R, Vinothini G (2017) Oleaginous Microorganisms for Biofuel Development. Environ Sci & Engg Vol. 12: Climate Change and Sustainable Technology

  46. Cho HU, Park JM (2018) Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour Technol 256:502–508. https://doi.org/10.1016/j.biortech.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  47. Rempel A, Biolchi GN, Antunes AC, Gutkoski JP, Treichel H, Colla LM (2020) Cultivation of Microalgae in Media Added of Emergent Pollutants and Effect on Growth, Chemical Composition, and Use of Biomass to Enzymatic Hydrolysis. Bioenergy Res 2:1–3. https://doi.org/10.1007/s12155-020-10177-w

    Article  CAS  Google Scholar 

  48. Valdez-Ojeda RA, del Rayo Serrano-Vázquez MG, Toledano-Thompson T, Chavarría-Hernández JC, Barahona-Pérez LF (2020) Effect of Media Composition and Culture Time on the Lipid Profile of the Green Microalga Coelastrum sp. and Its Suitability for Biofuel Production. Bioenergy Res 30:1–3. https://doi.org/10.1007/s12155-020-10160-5

    Article  CAS  Google Scholar 

  49. Malibari R, Sayegh F, Elazzazy AM, Baeshen MN, Dourou M, Aggelis G (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea–Jeddah. J Clean Prod 198:160–169. https://doi.org/10.1016/j.jclepro.2018.07.037

    Article  CAS  Google Scholar 

  50. Dourou M, Tsolcha ON, Tekerlekopoulou AG, Bokas D, Aggelis G (2018) Fish farm effluents are suitable growth media for Nannochloropsis gaditana, a polyunsaturated fatty acid producing microalga. Eng Life Sci 18(11):851–860. https://doi.org/10.1002/elsc.201800064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li DW, Balamurugan S, Yang YF, Zheng JW, Huang D, Zou LG, Yang WD, Liu JS, Guan Y, Li HY (2019) Transcriptional regulation of microalgae for concurrent lipid overproduction and secretion. Sci Adv 5(1):eaau3795. https://doi.org/10.1126/sciadv.aau3795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101(1):S71–S74. https://doi.org/10.1016/j.biortech.2009.03.030

    Article  CAS  PubMed  Google Scholar 

  53. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112. https://doi.org/10.1002/bit.22033

    Article  CAS  PubMed  Google Scholar 

  54. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635. https://doi.org/10.1016/S0141-0229(00)00266-0

    Article  CAS  PubMed  Google Scholar 

  55. Cheng Y, Zhou W, Gao C, Lan K, Gao Y, Wu Q (2009) Biodiesel production from Jerusalem artichoke (Helianthus tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides. J Chem Technol Biotechnol 84(5):777–781. https://doi.org/10.1002/jctb.2111

    Article  CAS  Google Scholar 

  56. Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31(7):1043–1049. https://doi.org/10.1007/s10529-009-9975-7

    Article  CAS  PubMed  Google Scholar 

  57. Wen X, Geng Y, Li Y (2019) Enhanced lipid production in Chlorella pyrenoidosa by continuous culture. Bioresour Technol 161:297–303. https://doi.org/10.1016/j.biortech.2014.03.077

    Article  CAS  Google Scholar 

  58. Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biot 81(4):629–636. https://doi.org/10.1007/s00253-008-1681-1

    Article  CAS  Google Scholar 

  59. Pleissner D, Lam WC, Sun Z, Lin CS (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146. https://doi.org/10.1016/j.biortech.2013.03.088

    Article  CAS  PubMed  Google Scholar 

  60. Cheirsilp B, Thawechai T, Prasertsan P (2017) Immobilized oleaginous microalgae for production of lipid and phytoremediation of secondary effluent from palm oil mill in fluidized bed photobioreactor. Bioresour Technol 241:787–794. https://doi.org/10.1016/j.biortech.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  61. Weldy CS, Huesemann MI (2007) Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. J Undergrad Res 7:115–122

    Google Scholar 

  62. Takagi M, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101(3):223–226. https://doi.org/10.1263/jbb.101.223

    Article  CAS  PubMed  Google Scholar 

  63. Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–52. https://doi.org/10.1016/s0065-2164(02)51000-5

    Article  CAS  PubMed  Google Scholar 

  64. Han L, Pei H, Hu W, Jiang L, Ma G, Zhang S, Han F (2015) Integrated campus sewage treatment and biomass production by Scenedesmus quadricauda SDEC-13. Bioresour Technol 175:262–268. https://doi.org/10.1016/j.biortech.2014.10.100

    Article  CAS  PubMed  Google Scholar 

  65. Shin DY, Cho HU, Utomo JC, Choi YN, Xu X, Park JM (2014) Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour Technol 184:215–221. https://doi.org/10.1016/j.biortech.2014.10.090

    Article  CAS  PubMed  Google Scholar 

  66. Goswami L, Namboodiri MT, Kumar RV, Pakshirajan K, Pugazhenthi G (2017) Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater. Renew Energ 105:400–406. https://doi.org/10.1016/j.renene.2016.12.044

    Article  CAS  Google Scholar 

  67. Zhang Q, Li Y, Xia L (2014) An oleaginous endophyte Bacillus subtilis HB1310 isolated from thin-shelled walnut and its utilization of cotton stalk hydrolysate for lipid production. Biotechnol Biofuels 7(1):152 http://www.biotechnologyforbiofuels.com/content/7/1/152

    Article  Google Scholar 

  68. Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microb Biot 24(9):1703. https://doi.org/10.1007/s11274-008-9664-z

    Article  CAS  Google Scholar 

  69. Gujjala LK, Kumar SJ, Talukdar B, Dash A, Kumar S, Sherpa KC, Banerjee R (2017) Biodiesel from oleaginous microbes: opportunities and challenges. Biofuels 10(1):45–59. https://doi.org/10.1080/17597269.2017.1402587

    Article  CAS  Google Scholar 

  70. Matsakas L, Giannakou M, Vörös D (2017) Effect of synthetic and natural media on lipid production from Fusarium oxysporum. Electron J Biotechn 30:95–102. https://doi.org/10.1016/j.ejbt.2017.10.003

    Article  CAS  Google Scholar 

  71. Chen J, Zhang X, Tyagi RD, Drogui P (2018) Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus. Bioresour Technol 253:8–15. https://doi.org/10.1016/j.biortech.2018.01.008

    Article  CAS  PubMed  Google Scholar 

  72. Al-Hawash AB, Li S, Zhang X, Zhang X, Ma F (2018) Productivity of γ-Linoleic acid by oleaginous fungus Cunninghamella echinulata using a pulsed high magnetic field. Food Biosci 21:1–7. https://doi.org/10.1016/j.fbio.2017.10.007

    Article  CAS  Google Scholar 

  73. Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills KL (2014) Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnol Adv 32(7):1336–1360. https://doi.org/10.1016/j.biotechadv.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  74. Kleinzeller A (1944) Fat Formation in Torulopsis lipofera. Biochem J 38(5):480

    Article  CAS  Google Scholar 

  75. Oguri E, Masaki K, Naganuma T, Iefuji H (2012) Phylogenetic and biochemical characterization of the oil-producing yeast Lipomyces starkeyi. Anton Leeuw Int J G 101(2):359–368. https://doi.org/10.1007/s10482-011-9641-7

    Article  CAS  Google Scholar 

  76. Eroshin VK, Krylova NI (1983) Efficiency of lipid synthesis by yeasts. Biotechnol Bioeng 25(7):1693–1700. https://doi.org/10.1002/bit.260250702

    Article  CAS  PubMed  Google Scholar 

  77. Kitcha S, Cheirsilp B (2011) Screening of oleaginous yeasts and optimization for lipid production using crude glycerol as a carbon source. Energy Procedia 9:274–282. https://doi.org/10.1016/j.egypro.2011.09.029

    Article  CAS  Google Scholar 

  78. Pan LX, Yang DF, Shao L, Li W, Chen GG, Liang ZQ (2009) Isolation of the oleaginous yeasts from the soil and studies of their lipid-producing capacities. Food Technol Biotech 47(2):215–220

    CAS  Google Scholar 

  79. Amaretti A, Raimondi S, Leonardi A, Rossi M (2012) Candida freyschussii: an oleaginous yeast producing lipids from glycerol. Industrial Biotechnology International Conference 2012 27:139–144

    Google Scholar 

  80. Duarte SH, de Andrade CC, Ghiselli G, Maugeri F (2013) Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresour Technol 138:377–381. https://doi.org/10.1016/j.biortech.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  81. Franklin S, Piechocki J, Norris LM, Decker SM, Wee J, Zdanis D (2011) Oleaginous yeast food compositions. United States patent application US 13/087,305.

  82. Sentheshanmuganathan S, Nickerson WJ (1962) Composition of cells and cell walls of triangular and ellipsoidal forms of Trigonopsis variabilis. J Microbiol 27(3):451–464. https://doi.org/10.1099/00221287-27-3-451

    Article  CAS  Google Scholar 

  83. Bati N, Hammond EG, Glatz BA (1984) Biomodification of fats and oils: Trials with Candida lipolytica. J Am Oil Chem Soc 61(11):1743–1746. https://doi.org/10.1007/BF02582139

    Article  CAS  Google Scholar 

  84. Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M (2010) Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact 9(1):73 http://www.microbialcellfactories.com/content/9/1/73

    Article  Google Scholar 

  85. Sitepu IR, Sestric R, Ignatia L, Levin D, German JB, Gillies LA, Almada LA, Boundy-Mills KL (2013) Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour Technol 144:360–369. https://doi.org/10.1016/j.biortech.2013.06.047

    Article  CAS  PubMed  Google Scholar 

  86. Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, Ponzoni C, Pagnoni UM, Matteuzzi D (2009) Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol 69(3):363–372. https://doi.org/10.1111/j.1574-6941.2009.00727.x

    Article  CAS  PubMed  Google Scholar 

  87. Huang C, Chen XF, Xiong L, Ma LL (2012) Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour Technol 110:711–714. https://doi.org/10.1016/j.biortech.2012.01.077

    Article  CAS  PubMed  Google Scholar 

  88. Iassonova DR (2009) Lipid synthesis and encapsulation by Cryptococcus curvatus. J Am Oil Chem Soc 85:711. https://doi.org/10.31274/etd-180810-648

    Article  Google Scholar 

  89. Ling J, De Toledo RA, Shim H (2016) Biodiesel production from wastewater using oleaginous yeast and microalgae. In: Shih K (ed) M.N.V. Prasad. Academic Press, New York, Environmental Materials and Waste, pp 179–212. https://doi.org/10.1016/B978-0-12-803837-6.00008-1

    Chapter  Google Scholar 

  90. Probst KV, Vadlani PV (2015) Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products. Bioresour Technol 198:268–275. https://doi.org/10.1016/j.biortech.2015.09.018

    Article  CAS  PubMed  Google Scholar 

  91. Llamas M, Dourou M, González-Fernández C, Aggelis G, Tomás-Pejó E (2020) Screening of oleaginous yeasts for lipid production using volatile fatty acids as substrate. Biomass Bioenerg 138:105553. https://doi.org/10.1016/j.biombioe.2020.105553

    Article  CAS  Google Scholar 

  92. Papanikolaou S, Rontou M, Belka A, Athenaki M, Gardeli C, Mallouchos A, Kalantzi O, Koutinas AA, Kookos IK, Zeng AP, Aggelis G (2016) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17(3):262–281. https://doi.org/10.1002/elsc.201500191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126. https://doi.org/10.1016/j.jbiotec.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  94. Arous F, Frikha F, Triantaphyllidou IE, Aggelis G, Nasri M, Mechichi T (2016) Potential utilization of agro-industrial wastewaters for lipid production by the oleaginous yeast Debaryomyces etchellsii. J Clean Prod 133:899–909. https://doi.org/10.1016/j.jclepro.2016.06.040

    Article  CAS  Google Scholar 

  95. Dourou M, Kancelista A, Juszczyk P, Sarris D, Bellou S, Triantaphyllidou IE, Rywinska A, Papanikolaou S, Aggelis G (2016) Bioconversion of olive mill wastewater into high-added value products. J Clean Prod 139:957–969. https://doi.org/10.1016/j.jclepro.2016.08.133

    Article  CAS  Google Scholar 

  96. Daskalaki A, Perdikouli N, Aggeli D, Aggelis G (2019) Laboratory evolution strategies for improving lipid accumulation in Yarrowia lipolytica. Appl Microbiol Biotechnol 103(20):8585–8596. https://doi.org/10.1007/s00253-019-10088-7

    Article  CAS  PubMed  Google Scholar 

  97. Aloklah B, Alhajali A, Yaziji S (2014) Identification of some yeasts by fatty acid profiles. Pol J Microbiol 63(4):467–472

    Article  Google Scholar 

  98. Fakas S, Papanikolaou S, Galiotou-Panayotou M, Komaitis M, Aggelis G (2008) Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. J Appl Microbial 105(4):1062–1070. https://doi.org/10.1111/j.1365-2672.2008.03839.x

    Article  CAS  Google Scholar 

  99. Dharumadurai D, Annamalai P, Nooruddin T, Saravanan C, Isolation (2014) characterization of antibacterial methyl substituted β-lactum compound from Streptomyces noursei DPTD21 in saltpan soil, India. JBAPN 4(2):71–88. https://doi.org/10.1080/22311866.2013.833388

    Article  CAS  Google Scholar 

  100. Gundolf R, Oberleitner S, Richter J (2019) Evaluation of New Genetic Toolkits and Their Role for Ethanol Production in Cyanobacteria. Energies 12(18):3515. https://doi.org/10.3390/en12183515

    Article  CAS  Google Scholar 

  101. Lo J, Zheng T, Hon S, Olson DG, Lynd LR (2015) The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is necessary for ethanol production in Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. J Bacteriol 197(8):1386–1393. https://doi.org/10.1128/JB.02450-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Celaya-Herrera S, Casados-Vázquez LE, Valdez-Vazquez I, Barona-Gómez F, Bideshi DK, Barboza-Corona JE (2020) A Cellulolytic Streptomyces sp. Isolated from a Highly Oligotrophic Niche Shows Potential for Hydrolyzing Agricultural Wastes. Bioenergy Res 31:1–1. https://doi.org/10.1007/s12155-020-10174-z

    Article  CAS  Google Scholar 

  103. Subhash GV, Mohan SV (2015) Sustainable biodiesel production through bioconversion of lignocellulosic wastewater by oleaginous fungi. Biomass Convers Biorefin 5(2):215–226

    Article  CAS  Google Scholar 

  104. Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, RaviKumar A (2012) Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb Cell Fact 11(1):71. doi:10.1186%2F1475-2859-11-71

  105. Economou CN, Aggelis G, Pavlou S, Vayenas DV (2011) Single cell oil production from rice hulls hydrolysate. Bioresour Technol 102(20):9737–9742. https://doi.org/10.1016/j.biortech.2011.08.025

    Article  CAS  PubMed  Google Scholar 

  106. Moustogianni A, Bellou S, Triantaphyllidou IE, Aggelis G (2015) Feasibility of raw glycerol conversion into single cell oil by zygomycetes under non-aseptic conditions. Biotechnol Bioeng 112(4):827–831. https://doi.org/10.1002/bit.25482

    Article  CAS  PubMed  Google Scholar 

  107. Athenaki M, Gardeli C, Diamantopoulou P, Tchakouteu SS, Sarris D, Philippoussis A, Papanikolaou S (2018) Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124(2):336–367. https://doi.org/10.1111/jam.13633

    Article  CAS  PubMed  Google Scholar 

  108. Kikukawa H, Sakuradani E, Ando A, Shimizu S (2018 May 1) Ogawa J (2018) Arachidonic acid production by the oleaginous fungus Mortierella alpina 1S-4: A review. J Adv Res 11:15–22. https://doi.org/10.1016/j.jare.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sharifyazd S, Karimi K (2017) Effects of fermentation conditions on valuable products of ethanolic fungus Mucor indicus. Electron J Biotechnol 30:77–82. https://doi.org/10.1016/j.ejbt.2017.09.003

    Article  CAS  Google Scholar 

  110. Carvalho AK, Bento HB, Rivaldi JD, de Castro HF (2018) Direct transesterification of Mucor circinelloides biomass for biodiesel production: effect of carbon sources on the accumulation of fungal lipids and biofuel properties. Fuel 234:789–796. https://doi.org/10.1016/j.fuel.2018.07.029

    Article  CAS  Google Scholar 

  111. Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J (2013) Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47(10):3477–3483. https://doi.org/10.1016/j.watres.2013.03.046

    Article  CAS  PubMed  Google Scholar 

  112. Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10(8):939–956. https://doi.org/10.1039/b921695b

    Article  CAS  PubMed  Google Scholar 

  113. Suvarna K, Lolas A, Patricia Hughes MS, Friedman RL (2011) MICROBIOLOGY-Case Studies of Microbial Contamination in Biologic Product Manufacturing. Am Pharm Rev 14(1):50

    CAS  Google Scholar 

  114. Bader J, Mast-Gerlach E, Popović MK, Bajpai R, Stahl U (2010) Relevance of microbial coculture fermentations in biotechnology. J Appl Microbial 109(2):371–387. https://doi.org/10.1111/j.1365-2672.2009.04659.x

    Article  CAS  Google Scholar 

  115. Santos CA, Reis A (2014) Microalgal symbiosis in biotechnology. Appl Microbiol Biot 98(13):5839–5846. https://doi.org/10.1007/s00253-014-5764-x

    Article  CAS  Google Scholar 

  116. Hays SG, Patrick WG, Ziesack M, Oxman N, Silver PA (2015) Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 36:40–49. https://doi.org/10.1016/j.copbio.2015.08.008

    Article  CAS  PubMed  Google Scholar 

  117. Younginger BS, Friesen ML (2019) Connecting signals and benefits through partner choice in plant–microbe interactions. FEMS Microbiol Lett 366(18):fnz217.

  118. Krespach MK, García-Altares M, Flak M, Schoeler H, Scherlach K, Netzker T, Schmalzl A, Mattern DJ, Schroeckh V, Komor A, Mittag M (2020) Lichen-like association of Chlamydomonas reinhardtii and Aspergillus nidulans protects algal cells from bacteria. ISME J 14(11):2794–2805

    Article  CAS  Google Scholar 

  119. Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S (2018) Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 38(5):690–703. https://doi.org/10.1080/07388551.2017.1390728

    Article  CAS  PubMed  Google Scholar 

  120. Bradáčová K, Florea AS, Bar-Tal A, Minz D, Yermiyahu U, Shawahna R, Kraut-Cohen J, Zolti A, Erel R, Dietel K, Weinmann M (2019) Microbial consortia versus single-strain inoculants: an advantage in PGPM-assisted tomato production? Agronomy 9(2):105

    Article  Google Scholar 

  121. Timmis K, Vos WMD, Ramos JL, Vlaeminck SE, Prieto A, Danchin A, Verstraete W, Lorenzo VD, Lee SY, Brüssow H, Singh BK (2017) The contribution of microbial biotechnology to sustainable development goals. Microbial biotechnology 10(5):984–987

    Article  Google Scholar 

  122. Chu WL (2017) Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock. Eur J Phycol 52(4):419–437. https://doi.org/10.1080/09670262.2017.1379100

    Article  CAS  Google Scholar 

  123. Ramírez-Verduzco LF, Rodríguez-Rodríguez JE, del Rayo J-JA (2012) Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91(1):102–111. https://doi.org/10.1016/j.fuel.2011.06.070

    Article  CAS  Google Scholar 

  124. Bahafid W, Joutey NT, Asri M, Sayel H, Tirry N, El Ghachtouli N, Sayel NT (2017) Yeast biomass: an alternative for bioremediation of heavy metals. Yeast-Industrial Applications. https://doi.org/10.5772/intechopen.70559

  125. Ueda H, Otsuka S, Senoo K (2009) Bacterial communities constructed in artificial consortia of bacteria and Chlorella vulgaris. Microbes Environ:1002020160. https://doi.org/10.1264/jsme2.ME09177

  126. Ishika T, Moheimani NR, Bahri PA (2017) Sustainable saline microalgae co-cultivation for biofuel production: a critical review. Renew Sust Energ Rev 78:356–368. https://doi.org/10.1016/j.rser.2017.04.110

    Article  CAS  Google Scholar 

  127. Arora M, Anil AC, Leliaert F, Delany J, Mesbahi E (2013) Tetraselmis indica (Chlorodendrophyceae, Chlorophyta), a new species isolated from salt pans in Goa, India. Eur J Phycol 48(1):61–78. https://doi.org/10.1080/09670262.2013.768357

    Article  Google Scholar 

  128. Boonma S, Takarada T, Peerapornpisal Y, Pumas C, Chaiklangmuang S (2019) Semi-continuous cultivation of microalgal consortium using low CO2 concentration for large-scale biofuel production. J Biotech Res 10:19–28

    CAS  Google Scholar 

  129. Bogen C, Klassen V, Wichmann J, La Russa M, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH (2013) Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresour Technol 133:622–626. https://doi.org/10.1016/j.biortech.2013.01.164

    Article  CAS  PubMed  Google Scholar 

  130. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  131. Zhao P, Yu X, Li J, Tang X, Huang Z (2014) Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng 118(1):72–77

    Article  CAS  Google Scholar 

  132. Asmare AM, Demessie BA, Murthy GS (2014) Investigation of Microalgae Co-Cultures for Nutrient Recovery and Algal Biomass Production from Dairy Manure. Appl Eng Agric 30(2):335–342

    Google Scholar 

  133. Sharma J, Kumar V, Kumar SS, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Microalgal consortia for municipal wastewater treatment–Lipid augmentation and fatty acid profiling for biodiesel production. J Photoch Photobio B 202:111638

    Article  CAS  Google Scholar 

  134. Ahmed Al Darmaki LG, Talebi S, Al-Rajhi S, Tahir Al-Barwani ZA (2012) Cultivation and characterization of microalgae for wastewater treatment. Proc World Congr Eng 1:4–7, London, U.K,

  135. Sharma N, Dwivedi A (2017) Bioremediation dairy wastewater for nitrate reduction. World J Pharm Life Sci 3:375–384

    Google Scholar 

  136. Koreivienė J, Valčiukas R, Karosienė J, Baltrėnas P (2014) Testing of Chlorella/Scenedesmus microalgae consortia for remediation of wastewater, CO2 mitigation and algae biomass feasibility for lipid production. J Environ Eng Landsc 22(2):105–114. https://doi.org/10.3846/16486897.2013.911182

    Article  Google Scholar 

  137. Pires JC, Alvim-Ferraz MC, Martins FG, Simões M (2013) Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut R 20(8):5096–5105. https://doi.org/10.1007/s11356-013-1791-x

    Article  CAS  Google Scholar 

  138. Gopalakrishnan K, Roostaei J, Zhang Y (2018) Mixed culture of Chlorella sp. and wastewater wild algae for enhanced biomass and lipid accumulation in artificial wastewater medium. Front Environ Sci Eng 12(4):14. https://doi.org/10.1007/s11783-018-1075-2

    Article  CAS  Google Scholar 

  139. Wilson MH, Shea A, Groppo J, Crofcheck C, Quiroz D, Quinn JC, Crocker M (2020) Algae-Based Beneficial Re-use of Carbon Emissions Using a Novel Photobioreactor: a Techno-Economic and Life Cycle Analysis. Bioenergy Res 8:1–1. https://doi.org/10.1007/s12155-020-10178-9

    Article  CAS  Google Scholar 

  140. Fuentes JL, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14(5):100. https://doi.org/10.3390/md14050100

    Article  CAS  PubMed Central  Google Scholar 

  141. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A (2019) Microalgae–bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol 126(2):359–368. https://doi.org/10.1111/jam.14095

    Article  CAS  PubMed  Google Scholar 

  142. Sapp M, Schwaderer AS, Wiltshire KH, Hoppe HG, Gerdts G, Wichels A (2007) Species-specific bacterial communities in the phycosphere of microalgae? Microb Ecol 53(4):683–699. https://doi.org/10.1007/s00248-006-9162-5

    Article  PubMed  Google Scholar 

  143. Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbial 14(6):1466–1476. https://doi.org/10.1111/j.1462-2920.2012.02733.x

    Article  CAS  Google Scholar 

  144. Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H (2018) Microalgae for the production of lipid and carotenoids: a review with focus on stress regulation and adaptation. Biotechnol Biofuels 11(1):272. https://doi.org/10.1186/s13068-018-1275-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nef C, Jung S, Mairet F, Kaas R, Grizeau D, Garnier M (2019) How haptophytes microalgae mitigate vitamin B 12 limitation. Sci Rep 9(1):8417. https://doi.org/10.1038/s41598-019-44797-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, Dearth SP, Van Mooy BA, Campagna SR, Kujawinski EB, Armbrust EV (2015) Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci 112(2):453–457. https://doi.org/10.1073/pnas.1413137112

    Article  CAS  PubMed  Google Scholar 

  147. Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131. https://doi.org/10.1016/S0168-1656(01)00353-4

    Article  CAS  PubMed  Google Scholar 

  148. Bilanovic D, Holland M, Starosvetsky J, Armon R (2016) Co-cultivation of microalgae and nitrifiers for higher biomass production and better carbon capture. Bioresour Technol 220:282–288. https://doi.org/10.1016/j.biortech.2016.08.083

    Article  CAS  PubMed  Google Scholar 

  149. Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrogen Energ 39(1):1–2. https://doi.org/10.1016/j.ijhydene.2013.10.060

    Article  CAS  Google Scholar 

  150. MiuRA Y, Saitoh C, Matsuoka S, Miyamoto K (1992) Stably sustained hydrogen production with high molar yield through a combination of a marine green alga and a photosynthetic bacterium. Biosci Biotech Biochem 56(5):751–754. https://doi.org/10.1271/bbb.56.751

    Article  CAS  Google Scholar 

  151. Kawaguchi H, Hashimoto K, Hirata K, Miyamoto K (2001) H2 production from algal biomass by a mixed culture of Rhodobium marinum A-501 and Lactobacillus amylovorus. J Biosci Bioeng 91(3):277–282. https://doi.org/10.1016/S1389-1723(01)80134-1

    Article  CAS  PubMed  Google Scholar 

  152. Contreras-Angulo JR, Mata TM, Cuellar-Bermudez SP, Caetano NS, Chandra R, Garcia-Perez JS, Muylaert K, Parra-Saldivar R (2019) Symbiotic co-culture of Scenedesmus sp. and Azospirillum brasilense on N-deficient media with biomass production for biofuels. Sustainability 11(3):707

    Article  CAS  Google Scholar 

  153. Tsolcha ON, Tekerlekopoulou AG, Akratos CS, Antonopoulou G, Aggelis G, Genitsaris S, Moustaka-Gouni M, Vayenas DV (2018) A Leptolyngbya-based microbial consortium for agro-industrial wastewaters treatment and biodiesel production. Env Sci Pollut Res 25(18):17957–17966. https://doi.org/10.1007/s11356-018-1989-z

    Article  CAS  Google Scholar 

  154. Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T, Ball AS, Mouradov A (2014) Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PloS one 9(11):e113497. https://doi.org/10.1371/journal.pone.0113497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Muradov N, Taha M, Miranda AF, Wrede D, Kadali K, Gujar A, Stevenson T, Ball AS, Mouradov A (2015) Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production. Biotechnol Biofuels 8(1):24. https://doi.org/10.1186/s13068-015-0210-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang R, Tian Y, Xue S, Zhang D, Zhang Q, Wu X, Kong D, Cong W (2016) Enhanced microalgal biomass and lipid production via co-culture of Scenedesmus obliquus and Candida tropicalis in an autotrophic system. J Chem Technol Biot 91(5):1387–1396. https://doi.org/10.1002/jctb.4735

    Article  CAS  Google Scholar 

  157. Liu L, Chen J, Lim PE, Wei D (2018) Dual-species cultivation of microalgae and yeast for enhanced biomass and microbial lipid production. J Appl Phycol 30(6):2997–3007. https://doi.org/10.1007/s10811-018-1526-y

    Article  CAS  Google Scholar 

  158. Rajapitamahuni S, Bachani P, Sardar RK, Mishra S (2019) Co-cultivation of siderophore-producing bacteria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J Appl Phycol 31(1):29–39

    Article  CAS  Google Scholar 

  159. Berthold DE, Shetty KG, Jayachandran K, Laughinghouse HD IV, Gantar M (2019) Enhancing algal biomass and lipid production through bacterial co-culture. Biomass bioenergy 122:280–289. https://doi.org/10.1016/j.biombioe.2019.01.033

    Article  CAS  Google Scholar 

  160. Ahmad JS, Cai W, Zhao Z, Zhang Z, Shimizu K, Lei Z, Lee DJ (2017) Stability of algal-bacterial granules in continuous-flow reactors to treat varying strength domestic wastewater. Bioresour Technol 244:225–233. https://doi.org/10.1016/j.biortech.2017.07.134

    Article  CAS  PubMed  Google Scholar 

  161. Markou G, Vandamme D, Muylaert K (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–202. https://doi.org/10.1016/j.watres.2014.07.025

    Article  CAS  PubMed  Google Scholar 

  162. Lin C, Cao P, Xu X, Ye B (2019) Algal-bacterial symbiosis system treating high-load printing and dyeing wastewater in continuous-flow reactors under natural light. Water 11(3):469. https://doi.org/10.3390/w11030469

    Article  CAS  Google Scholar 

  163. Xu M, Xue Z, Sun S, Zhao C, Liu J, Liu J, Zhao Y (2020) Co-culturing microalgae with endophytic bacteria increases nutrient removal efficiency for biogas purification. Bioresour Technol 314:123766. https://doi.org/10.1016/j.biortech.2020.123766

    Article  CAS  PubMed  Google Scholar 

  164. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308(5724):1017–1020. https://doi.org/10.1126/science.1111347

    Article  CAS  PubMed  Google Scholar 

  165. Zhou W, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167(2):214–228. https://doi.org/10.1007/s12010-012-9667-y

    Article  CAS  PubMed  Google Scholar 

  166. Veiter L, Rajamanickam V, Herwig C (2018) The filamentous fungal pellet—relationship between morphology and productivity. Appl Microbiol Biot 102(7):2997–3006. https://doi.org/10.1007/s00253-018-8818-7

    Article  CAS  Google Scholar 

  167. Gultom SO, Zamalloa C, Hu B (2014) Microalgae harvest through fungal pelletization—co-culture of Chlorella vulgaris and Aspergillus niger. Energies 7(7):4417–4429. https://doi.org/10.3390/en7074417

    Article  Google Scholar 

  168. Xia C, Zhang J, Zhang W, Hu B (2011) A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol biofuels 4(1):1-0. doi:https://doi.org/10.1186/1754-6834-4-15

  169. Dash A, Banerjee R (2017) Enhanced biodiesel production through phyco-myco co-cultivation of Chlorella minutissima and Aspergillus awamori: an integrated approach. Bioresour Technol 238:502–509. https://doi.org/10.1016/j.biortech.2017.04.039

    Article  CAS  PubMed  Google Scholar 

  170. Toscano L, Ogden KL, Ogden G, Cervantes L, Steichen SA, Brown C, Samaniego BY, Brown JK (2018) Harvesting the Microalga Chlorella sorokiniana by Fungal-Assisted Pelletization. J Biobased Mater Bio 12(6):493–505. https://doi.org/10.1166/jbmb.2018.1798

    Article  CAS  Google Scholar 

  171. Bhatnagar VS, Bandyopadhyay P, Rajacharya GH, Sarkar S, Poluri KM, Kumar S (2019) Amelioration of biomass and lipid in marine alga by an endophytic fungus Piriformospora indica. Biotechnol Biofuels 12(1):176. https://doi.org/10.1186/s13068-019-1516-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Du ZY, Alvaro J, Hyden B, Zienkiewicz K, Benning N, Zienkiewicz A, Bonito G, Benning C (2018) Enhancing oil production and harvest by combining the marine alga Nannochloropsis oceanica and the oleaginous fungus Mortierella elongata. Biotechnol Biofuels 11(1):1-6. doi:https://doi.org/10.1186/s13068-018-1172-2.

  173. Yang L, Li H, Wang Q (2019) A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresour Technol 275:35–43

    Article  CAS  Google Scholar 

  174. Naidoo RK, Simpson ZF, Oosthuizen JR, Bauer FF (2019) Nutrient exchange of carbon and nitrogen promotes the formation of stable mutualisms between Chlorella sorokiniana and Saccharomyces cerevisiae under engineered synthetic growth conditions. Front Microbial 10:609

    Article  Google Scholar 

  175. Simpson ZF (2018) Engineered yeast and microalgae mutualisms: Synthetic ecology applied to species isolated from winery wastewater (Master’s dissertation, Stellenbosch: Stellenbosch University).

  176. Chi Z, Zheng Y, Jiang A, Chen S (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol 165(2):442–453. https://doi.org/10.1007/s12010-011-9263-6

    Article  CAS  PubMed  Google Scholar 

  177. De-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36(12):2941–2948. https://doi.org/10.1016/S0043-1354(01)00522-X

    Article  CAS  PubMed  Google Scholar 

  178. Mujtaba G, Rizwan M, Lee K (2015) Simultaneous removal of inorganic nutrients and organic carbon by symbiotic co-culture of Chlorella vulgaris and Pseudomonas putida. Biotechnol Bioprocess Eng 20(6):1114–1122. https://doi.org/10.1007/s12257-015-0421-5

    Article  CAS  Google Scholar 

  179. Mujtaba G, Lee K (2016) Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria. Appl Chem Eng 27(1):1–9. https://doi.org/10.14478/ace.2016.1002

    Article  CAS  Google Scholar 

  180. González C, Marciniak J, Villaverde S, Leon C, Garcia PA, Munoz R (2008) Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae-bacteria consortia. Water Sci Technol 58(1):95–102. https://doi.org/10.2166/wst.2008.655

    Article  CAS  PubMed  Google Scholar 

  181. de Godos I, Vargas VA, Blanco S, González MC, Soto R, García-Encina PA, Becares E, Muñoz R (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour Technol 101(14):5150–5158. https://doi.org/10.1016/j.biortech.2010.02.010

    Article  CAS  PubMed  Google Scholar 

  182. Li T, Li CT, Butler K, Hays SG, Guarnieri MT, Oyler GA, Betenbaugh MJ (2017) Mimicking lichens: incorporation of yeast strains together with sucrose-secreting cyanobacteria improves survival, growth, ROS removal, and lipid production in a stable mutualistic co-culture production platform. Biotechnol Biofuels 10(1):1–1. https://doi.org/10.1186/s13068-017-0736-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Arora N, Patel A, Mehtani J, Pruthi PA, Pruthi V, Poluri KM (2019) Co-culturing of oleaginous microalgae and yeast: paradigm shift towards enhanced lipid productivity. Environ Sci Pollut Res:1–22. https://doi.org/10.1007/s11356-019-05138-6

  184. Suastes-Rivas JK, Hernández-Altamirano R, Mena-Cervantes VY, Chairez I (2020) Simultaneous Optimization of Biomass and Metabolite Production by a Microalgae-Yeast Co-culture Under Inorganic Micronutrients. Bioenergy Res 17:1–2. https://doi.org/10.1007/s12155-020-10116-9

    Article  CAS  Google Scholar 

  185. Qin L, Liu L, Zeng AP, Wei D (2017) From low-cost substrates to single cell oils synthesized by oleaginous yeasts. Bioresour Technol 245:1507–1519. https://doi.org/10.1016/j.biortech.2017.05.163

    Article  CAS  PubMed  Google Scholar 

  186. Xue F, Miao J, Zhang X, Tan T (2010) A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis. Appl Biochem Biotechnol 160(2):498–503. https://doi.org/10.1007/s12010-008-8376-z

    Article  CAS  PubMed  Google Scholar 

  187. Zhang K, Zheng J, Xue D, Ren D, Lu J (2017) Effect of photoautotrophic and heteroautotrophic conditions on growth and lipid production in Chlorella vulgaris cultured in industrial wastewater with the yeast Rhodotorula glutinis. J Appl Phycol 29(6):2783–2788. https://doi.org/10.1007/s10811-017-1168-5

    Article  CAS  Google Scholar 

  188. Papone T, Kookkhunthod S, Leesing R (2012) Microbial oil production by monoculture and mixed cultures of microalgae and oleaginous yeasts using sugarcane juice as substrate. World Acad Sci Eng Technol 64:1127–1131. https://doi.org/10.5281/zenodo.1332532

    Article  Google Scholar 

  189. Kitcha S, Cheirsilp B (2014) Enhanced lipid production by co-cultivation and co-encapsulation of oleaginous yeast Trichosporonoides spathulata with microalgae in alginate gel beads. Appl Biochem Biotechnol 173(2):522–534. https://doi.org/10.1007/s12010-014-0859-5

    Article  CAS  PubMed  Google Scholar 

  190. Tian YT, Wang X, Cui YH, Wang SK (2020) A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Bioproc Biosyst Eng 43(12):2243–2252. https://doi.org/10.1007/s00449-020-02409-2

    Article  CAS  Google Scholar 

  191. Zhou W, Wang W, Li Y, Zhang Y (2013) Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield. Bioresour Technol 127:435–440

    Article  CAS  Google Scholar 

  192. Iasimone F, Zuccaro G, D'Oriano V, Franci G, Galdiero M, Pirozzi D, De Felice V, Pirozzi F (2018) Combined yeast and microalgal cultivation in a pilot-scale raceway pond for urban wastewater treatment and potential biodiesel production. Water Sci Technol 77(4):1062–1071. https://doi.org/10.2166/wst.2017.620

    Article  CAS  PubMed  Google Scholar 

  193. Waghmode TR, Kurade MB, Govindwar SP (2011) Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. Int Biodeter Biodegr 65(3):479–486. https://doi.org/10.1016/j.ibiod.2011.01.010

    Article  CAS  Google Scholar 

  194. Li H, Zhong Y, Lu Q, Zhang X, Wang Q, Liu H, Diao Z, Yao C, Liu H (2019) Co-cultivation of Rhodotorula glutinis and Chlorella pyrenoidosa to improve nutrient removal and protein content by their synergistic relationship. RSC Adv 9(25):14331–14342. https://doi.org/10.1039/c9ra01884k

    Article  CAS  Google Scholar 

  195. Bahafid W, Tahri Joutey N, Sayel H, Boularab I, El Ghachtouli N (2013) Bioaugmentation of chromium-polluted soil microcosms with Candida tropicalis diminishes phytoavailable chromium. J Appl Microbial 115(3):727–734. https://doi.org/10.1111/jam.12282

    Article  CAS  Google Scholar 

  196. Saad MG, Dosoky NS, Zoromba MS, Shafik HM (2019) Algal biofuels: Current status and key challenges. Energies 12(10):1920. https://doi.org/10.3390/en12101920

    Article  CAS  Google Scholar 

  197. Doe US (2010) Office of Energy Efficiency and Renewable Energy. National algal biofuels technology roadmap

  198. Fasaei F, Bitter JH, Slegers PM, Van Boxtel AJ (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

    Article  Google Scholar 

  199. Geissler CH, Mulligan ML, Zmola ZE, Ray S, Morgan JA, Garner AL (2020) Electric Pulse Pretreatment for Enhanced Lipid Recovery from Chlorella protothecoides. Bioenergy Res 13(2):499–506. https://doi.org/10.1007/s12155-019-10064-z

    Article  CAS  Google Scholar 

  200. Ranjith Kumar R, Hanumantha Rao P, Arumugam M (2015) Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res 2:61. https://doi.org/10.3389/fenrg.2014.00061

    Article  Google Scholar 

  201. Chung JN (2013) Grand challenges in bioenergy and biofuel research: engineering and technology development, environmental impact, and sustainability. Front Energy Res 1:4. https://doi.org/10.3389/fenrg.2013.00004

    Article  Google Scholar 

  202. Amin M, Chetpattananondh P (2019) Enhanced Lipid Recovery from Marine Chlorella sp. by Ultrasonication with an Integrated Process Approach for Wet and Dry Biomass. Bioenergy Res 12(3):665–679. https://doi.org/10.1007/s12155-019-09986-5

    Article  CAS  Google Scholar 

  203. Sanchez AS, Matos AP (2018) Desalination concentrate management and valorization methods. In: Sustainable Desalination Handbook

    Google Scholar 

  204. Srinivasana M, Venkatesanb M, Arumugamc V, Natesand G, Saravananb N, Murugesane S, Ramachandranb S, Ayyasamyf R, Pugazhendhig A (2019) Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochem 80:197–202. https://doi.org/10.1016/j.procbio.2019.02.010

    Article  CAS  Google Scholar 

  205. Shankar PD, Shobana S, Karuppusamy I, Pugazhendhi A, Ramkumar VS, Arvindnarayan S, Kumar G (2016) A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: formation mechanism and applications. Enzyme Microb Technol 95:28–44. https://doi.org/10.1016/j.enzmictec.2016.10.015

    Article  CAS  PubMed  Google Scholar 

  206. Hariharana D, Thangamuniyandib P, Christyc AJ, Vasantharajad R, Selvakumare P, Sagadevanf S, Pugazhendhig A, Nehrua LC (2020) Enhanced photocatalysis and anticancer activity of green hydrothermal synthesized Ag@TiO2 nanoparticles. J Photoch Photobio B 202:111636

    Article  Google Scholar 

  207. Gen Q, Wang Q, Chi ZM (2014) Direct conversion of cassava starch into single cell oil by co-cultures of the oleaginous yeast Rhodosporidium toruloides and immobilized amylases-producing yeast Saccharomycopsis fibuligera. Renew Energy 62:522–526. https://doi.org/10.1016/j.renene.2013.08.016

    Article  CAS  Google Scholar 

  208. DellaGreca M, Zarrelli A, Fergola P, Cerasuolo M, Pollio A, Pinto G (2010) Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: experiments and modelling. J Chem Ecol 36(3):339–349. https://doi.org/10.1007/s10886-010-9753-y

    Article  CAS  PubMed  Google Scholar 

  209. Coleman RA, Lewin TM, Van Horn CG, Gonzalez-Baró MR (2002) Do long-chain acyl-CoA synthetases regulate fatty acid entry into synthetic versus degradative pathways? J Nutr 132(8):2123–2126. https://doi.org/10.1093/jn/132.8.2123

    Article  CAS  PubMed  Google Scholar 

  210. Salama ES, Hwang JH, El-Dalatony MM, Kurade MB, Kabra AN, Abou-Shanab RA, Kim KH, Yang IS, Govindwar SP, Kim S, Jeon BH (2018) Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. Bioresour Technol 258:365–375. https://doi.org/10.1016/j.biortech.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  211. Grant MA, Kazamia E, Cicuta P, Smith AG (2014) Direct exchange of vitamin B-12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. Int Soci Microb Ecol 8(7):1418–1427

    CAS  Google Scholar 

  212. Tan ZQ, Leow HY, Lee DC, Karisnan K, Song AA, Mai CW, Yap WS, Lim SH, Lai KS (2019) Co-culture Systems for the production of secondary metabolites: Current and future prospects. Open Biotechnol J 13:18–26. https://doi.org/10.2174/1874070701913010018

    Article  Google Scholar 

  213. Wu N (2018) Techno-economic analysis of biofuels production (Unpublished doctoral dissertation). University of Florida, Florida, USA

    Google Scholar 

  214. Kang S, Heo S, Lee JH (2018) Techno-economic Analysis of Microalgae-Based Lipid Production: Considering Influences of Microalgal Species. Ind Eng Chem 58(2):944–955. https://doi.org/10.1021/acs.iecr.8b03999

    Article  CAS  Google Scholar 

  215. Kang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, Kim HS (2015) A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. J Microbiol Biotechnol 25(1):109–118. https://doi.org/10.4014/jmb.1409.09019

    Article  CAS  PubMed  Google Scholar 

  216. Slegers PM, Olivieri G, Breitmayer E, Sijtsma L, Eppink MH, Wijffels RH, Reith JH (2020) Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Front Bioeng Biotechnol 8:1048. https://doi.org/10.3389/fbioe.2020.550758

    Article  Google Scholar 

  217. Singh B, Bauddh K, Bux F (2015) Algae and environmental sustainability. Springer, India

    Book  Google Scholar 

Download references

Funding

PKD and JR are financially supported by the Ministry of Human Resources and Development (MHRD), Government of India. SK is supported by a seed grant project from IIT (BHU) Varanasi for the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P.K., Rani, J., Rawat, S. et al. Microalgal Co-cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. Bioenerg. Res. 15, 1–26 (2022). https://doi.org/10.1007/s12155-021-10254-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10254-8

Keywords

Navigation